
BIND 9 Administrator Reference Manual

May 25, 2006

Copyright c© 2004, 2005, 2006 Internet Systems Consortium, Inc. (”ISC”)

Copyright c© 2000, 2001, 2002, 2003 Internet Software Consortium.

Chapter 1

Introduction

The Internet Domain Name System (DNS) consists of the syntax to specify the names of entities in the
Internet in a hierarchical manner, the rules used for delegating authority over names, and the system
implementation that actually maps names to Internet addresses. DNS data is maintained in a group of
distributed hierarchical databases.

1.1 Scope of Document

The Berkeley Internet Name Domain (BIND) implements an domain name server for a number of oper-
ating systems. This document provides basic information about the installation and care of the Internet
Software Consortium (ISC) BIND version 9 software package for system administrators.

This version of the manual corresponds to BIND version 9.2.

1.2 Organization of This Document

In this document, Section 1 introduces the basic DNS and BIND concepts. Section 2 describes resource
requirements for running BIND in various environments. Information in Section 3 is task-oriented in its
presentation and is organized functionally, to aid in the process of installing the BIND 9 software. The
task-oriented section is followed by Section 4, which contains more advanced concepts that the system
administrator may need for implementing certain options. Section 5 describes the BIND 9 lightweight
resolver. The contents of Section 6 are organized as in a reference manual to aid in the ongoing mainte-
nance of the software. Section 7addresses security considerations, and Section 8 contains troubleshooting
help. The main body of the document is followed by several Appendices which contain useful reference
information, such as a Bibliography and historic information related to BIND and the Domain Name
System.

1.3 Conventions Used in This Document

In this document, we use the following general typographic conventions:

To describe: We use the style:
a pathname, filename, URL, hostname, mailing
list name, or new term or concept

Fixed width

literal user input Fixed Width Bold
program output Fixed Width

3

1.4. THE DOMAIN NAME SYSTEM (DNS) CHAPTER 1. INTRODUCTION

The following conventions are used in descriptions of the BIND configuration file:

To describe: We use the style:
keywords Fixed Width
variables Fixed Width
Optional input [Text is enclosed in square brackets]

1.4 The Domain Name System (DNS)

The purpose of this document is to explain the installation and upkeep of the BIND software package,
and we begin by reviewing the fundamentals of the Domain Name System (DNS) as they relate to BIND.

1.4.1 DNS Fundamentals

The Domain Name System (DNS) is the hierarchical, distributed database. It stores information for
mapping Internet host names to IP addresses and vice versa, mail routing information, and other data
used by Internet applications.

Clients look up information in the DNS by calling a resolver library, which sends queries to one or more
name servers and interprets the responses. The BIND 9 software distribution contains both a name server
and a resolver library.

1.4.2 Domains and Domain Names

The data stored in the DNS is identified by domain names that are organized as a tree according to or-
ganizational or administrative boundaries. Each node of the tree, called a domain, is given a label. The
domain name of the node is the concatenation of all the labels on the path from the node to the root node.
This is represented in written form as a string of labels listed from right to left and separated by dots. A
label need only be unique within its parent domain.

For example, a domain name for a host at the company Example, Inc. could be mail.example.com,
where com is the top level domain to which ourhost.example.com belongs, example is a subdomain
of com, and ourhost is the name of the host.

For administrative purposes, the name space is partitioned into areas called zones, each starting at a
node and extending down to the leaf nodes or to nodes where other zones start. The data for each zone
is stored in a name server, which answers queries about the zone using the DNS protocol.

The data associated with each domain name is stored in the form of resource records (RRs). Some of the
supported resource record types are described in Section 6.3.1.

For more detailed information about the design of the DNS and the DNS protocol, please refer to the
standards documents listed in Section A.4.1.

1.4.3 Zones

To properly operate a name server, it is important to understand the difference between a zone and a
domain.

As we stated previously, a zone is a point of delegation in the DNS tree. A zone consists of those
contiguous parts of the domain tree for which a name server has complete information and over which
it has authority. It contains all domain names from a certain point downward in the domain tree except
those which are delegated to other zones. A delegation point is marked by one or more NS records in the
parent zone, which should be matched by equivalent NS records at the root of the delegated zone.

4

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

For instance, consider the example.com domain which includes names such as host.aaa.example.
com and host.bbb.example.com even though the example.com zone includes only delegations for
the aaa.example.com and bbb.example.com zones. A zone can map exactly to a single domain, but
could also include only part of a domain, the rest of which could be delegated to other name servers.
Every name in the DNS tree is a domain, even if it is terminal, that is, has no subdomains. Every subdomain
is a domain and every domain except the root is also a subdomain. The terminology is not intuitive and
we suggest that you read RFCs 1033, 1034 and 1035 to gain a complete understanding of this difficult
and subtle topic.

Though BIND is called a ”domain name server”, it deals primarily in terms of zones. The master and
slave declarations in the named.conf file specify zones, not domains. When you ask some other site
if it is willing to be a slave server for your domain, you are actually asking for slave service for some
collection of zones.

1.4.4 Authoritative Name Servers

Each zone is served by at least one authoritative name server, which contains the complete data for the
zone. To make the DNS tolerant of server and network failures, most zones have two or more authori-
tative servers.

Responses from authoritative servers have the ”authoritative answer” (AA) bit set in the response pack-
ets. This makes them easy to identify when debugging DNS configurations using tools like dig (Sec-
tion 3.4.1.1).

1.4.4.1 The Primary Master

The authoritative server where the master copy of the zone data is maintained is called the primary
master server, or simply the primary. It loads the zone contents from some local file edited by humans or
perhaps generated mechanically from some other local file which is edited by humans. This file is called
the zone file or master file.

1.4.4.2 Slave Servers

The other authoritative servers, the slave servers (also known as secondary servers) load the zone con-
tents from another server using a replication process known as a zone transfer. Typically the data are
transferred directly from the primary master, but it is also possible to transfer it from another slave. In
other words, a slave server may itself act as a master to a subordinate slave server.

1.4.4.3 Stealth Servers

Usually all of the zone’s authoritative servers are listed in NS records in the parent zone. These NS
records constitute a delegation of the zone from the parent. The authoritative servers are also listed in the
zone file itself, at the top level or apex of the zone. You can list servers in the zone’s top-level NS records
that are not in the parent’s NS delegation, but you cannot list servers in the parent’s delegation that are
not present at the zone’s top level.

A stealth server is a server that is authoritative for a zone but is not listed in that zone’s NS records.
Stealth servers can be used for keeping a local copy of a zone to speed up access to the zone’s records or
to make sure that the zone is available even if all the ”official” servers for the zone are inaccessible.

A configuration where the primary master server itself is a stealth server is often referred to as a ”hidden
primary” configuration. One use for this configuration is when the primary master is behind a firewall
and therefore unable to communicate directly with the outside world.

5

1.4. THE DOMAIN NAME SYSTEM (DNS) CHAPTER 1. INTRODUCTION

1.4.5 Caching Name Servers

The resolver libraries provided by most operating systems are stub resolvers, meaning that they are not
capable of performing the full DNS resolution process by themselves by talking directly to the authori-
tative servers. Instead, they rely on a local name server to perform the resolution on their behalf. Such
a server is called a recursive name server; it performs recursive lookups for local clients.

To improve performance, recursive servers cache the results of the lookups they perform. Since the
processes of recursion and caching are intimately connected, the terms recursive server and caching server
are often used synonymously.

The length of time for which a record may be retained in in the cache of a caching name server is
controlled by the Time To Live (TTL) field associated with each resource record.

1.4.5.1 Forwarding

Even a caching name server does not necessarily perform the complete recursive lookup itself. Instead,
it can forward some or all of the queries that it cannot satisfy from its cache to another caching name
server, commonly referred to as a forwarder.

There may be one or more forwarders, and they are queried in turn until the list is exhausted or an
answer is found. Forwarders are typically used when you do not wish all the servers at a given site
to interact directly with the rest of the Internet servers. A typical scenario would involve a number
of internal DNS servers and an Internet firewall. Servers unable to pass packets through the firewall
would forward to the server that can do it, and that server would query the Internet DNS servers on the
internal server’s behalf. An added benefit of using the forwarding feature is that the central machine
develops a much more complete cache of information that all the clients can take advantage of.

1.4.6 Name Servers in Multiple Roles

The BIND name server can simultaneously act as a master for some zones, a slave for other zones, and
as a caching (recursive) server for a set of local clients.

However, since the functions of authoritative name service and caching/recursive name service are
logically separate, it is often advantageous to run them on separate server machines. A server that
only provides authoritative name service (an authoritative-only server) can run with recursion disabled,
improving reliability and security. A server that is not authoritative for any zones and only provides
recursive service to local clients (a caching-only server) does not need to be reachable from the Internet
at large and can be placed inside a firewall.

6

Chapter 2

BIND Resource Requirements

2.1 Hardware requirements

DNS hardware requirements have traditionally been quite modest. For many installations, servers that
have been pensioned off from active duty have performed admirably as DNS servers.

The DNSSEC and IPv6 features of BIND 9 may prove to be quite CPU intensive however, so organiza-
tions that make heavy use of these features may wish to consider larger systems for these applications.
BIND 9 is now fully multithreaded, allowing full utilization of multiprocessor systems for installations
that need it.

2.2 CPU Requirements

CPU requirements for BIND 9 range from i486-class machines for serving of static zones without caching,
to enterprise-class machines if you intend to process many dynamic updates and DNSSEC signed zones,
serving many thousands of queries per second.

2.3 Memory Requirements

The memory of the server has to be large enough to fit the cache and zones loaded off disk. The max-
cache-size option can be used to limit the amount of memory used by the cache, at the expense of
reducing cache hit rates and causing more DNS traffic. It is still good practice to have enough memory
to load all zone and cache data into memory — unfortunately, the best way to determine this for a given
installation is to watch the nameserver in operation. After a few weeks the server process should reach a
relatively stable size where entries are expiring from the cache as fast as they are being inserted. Ideally,
the resource limits should be set higher than this stable size.

2.4 Nameserver Intensive Environment Issues

For nameserver intensive environments, there are two alternative configurations that may be used. The
first is where clients and any second-level internal nameservers query a main nameserver, which has
enough memory to build a large cache. This approach minimizes the bandwidth used by external name
lookups. The second alternative is to set up second-level internal nameservers to make queries indepen-
dently. In this configuration, none of the individual machines needs to have as much memory or CPU
power as in the first alternative, but this has the disadvantage of making many more external queries,
as none of the nameservers share their cached data.

7

2.5. SUPPORTED OPERATING SYSTEMS CHAPTER 2. BIND RESOURCE REQUIREMENTS

2.5 Supported Operating Systems

ISC BIND 9 compiles and runs on the following operating systems:

• IBM AIX 4.3

• Compaq Digital/Tru64 UNIX 4.0D

• Compaq Digital/Tru64 UNIX 5 (with IPv6 EAK)

• HP HP-UX 11

• IRIX64 6.5

• Sun Solaris 2.6, 7, 8

• NetBSD 1.5 (with unproven-pthreads 0.17)

• FreeBSD 3.4-STABLE, 3.5, 4.0, 4.1

• Red Hat Linux 6.0, 6.1, 6.2, 7.0

8

Chapter 3

Nameserver Configuration

In this section we provide some suggested configurations along with guidelines for their use. We also
address the topic of reasonable option setting.

3.1 Sample Configurations

3.1.1 A Caching-only Nameserver

The following sample configuration is appropriate for a caching-only name server for use by clients
internal to a corporation. All queries from outside clients are refused.

// Two corporate subnets we wish to allow queries from.
acl "corpnets" { 192.168.4.0/24; 192.168.7.0/24; };
options {

directory "/etc/namedb"; // Working directory
pid-file "named.pid"; // Put pid file in working dir
allow-query { "corpnets"; };

};
// Root server hints
zone "." { type hint; file "root.hint"; };
// Provide a reverse mapping for the loopback address 127.0.0.1
zone "0.0.127.in-addr.arpa" {

type master;
file "localhost.rev";
notify no;

};

3.1.2 An Authoritative-only Nameserver

This sample configuration is for an authoritative-only server that is the master server for ”example.
com” and a slave for the subdomain ”eng.example.com”.

options {
directory "/etc/namedb"; // Working directory
pid-file "named.pid"; // Put pid file in working dir
allow-query { any; }; // This is the default
recursion no; // Do not provide recursive service

};

9

3.3. NOTIFY CHAPTER 3. NAMESERVER CONFIGURATION

// Root server hints
zone "." { type hint; file "root.hint"; };

// Provide a reverse mapping for the loopback address 127.0.0.1
zone "0.0.127.in-addr.arpa" {

type master;
file "localhost.rev";
notify no;

};
// We are the master server for example.com
zone "example.com" {

type master;
file "example.com.db";
// IP addresses of slave servers allowed to transfer example.com
allow-transfer {

192.168.4.14;
192.168.5.53;

};
};
// We are a slave server for eng.example.com
zone "eng.example.com" {

type slave;
file "eng.example.com.bk";
// IP address of eng.example.com master server
masters { 192.168.4.12; };

};

3.2 Load Balancing

Primitive load balancing can be achieved in DNS using multiple A records for one name.

For example, if you have three WWW servers with network addresses of 10.0.0.1, 10.0.0.2 and 10.0.0.3,
a set of records such as the following means that clients will connect to each machine one third of the
time:

Name TTL CLASS TYPE Resource Record (RR) Data
www 600 IN A 10.0.0.1

600 IN A 10.0.0.2
600 IN A 10.0.0.3

When a resolver queries for these records, BIND will rotate them and respond to the query with the
records in a different order. In the example above, clients will randomly receive records in the order 1,
2, 3; 2, 3, 1; and 3, 1, 2. Most clients will use the first record returned and discard the rest.

For more detail on ordering responses, check the rrset-order substatement in the options statement, see
RRset Ordering. This substatement is not supported in BIND 9, and only the ordering scheme described
above is available.

3.3 Notify

DNS Notify is a mechanism that allows master nameservers to notify their slave servers of changes to a
zone’s data. In response to a NOTIFY from a master server, the slave will check to see that its version of
the zone is the current version and, if not, initiate a transfer.

10

CHAPTER 3. NAMESERVER CONFIGURATION 3.4. NAMESERVER OPERATIONS

DNS Notify is fully documented in RFC 1996. See also the description of the zone option also-notify,
see Section 6.2.14.6. For more information about notify, see Section 6.2.14.1.

3.4 Nameserver Operations

3.4.1 Tools for Use With the Nameserver Daemon

There are several indispensable diagnostic, administrative and monitoring tools available to the system
administrator for controlling and debugging the nameserver daemon. We describe several in this section

3.4.1.1 Diagnostic Tools

dig The domain information groper (dig) is a command line tool that can be used to gather information
from the Domain Name System servers. Dig has two modes: simple interactive mode for a single
query, and batch mode which executes a query for each in a list of several query lines. All query
options are accessible from the command line.

Usage
dig [@server] domain [query-type] [query-class] [+query-option]

[-dig-option] [%comment]

The usual simple use of dig will take the form

dig @server domain query-type query-class

For more information and a list of available commands and options, see the dig man page.

host The host utility provides a simple DNS lookup using a command-line interface for looking up
Internet hostnames. By default, the utility converts between host names and Internet addresses,
but its functionality can be extended with the use of options.

Usage
host [-aCdlrTwv] [-c class] [-N ndots] [-t type] [-W timeout] [-R

retries] hostname [server]

For more information and a list of available commands and options, see the host man page.

nslookup nslookup is a program used to query Internet domain nameservers. nslookup has two
modes: interactive and non-interactive. Interactive mode allows the user to query nameservers
for information about various hosts and domains or to print a list of hosts in a domain. Non-
interactive mode is used to print just the name and requested information for a host or domain.

Usage
nslookup [-option...] [host-to-find | - [server]]

Interactive mode is entered when no arguments are given (the default nameserver will be used)
or when the first argument is a hyphen (‘-’) and the second argument is the host name or Internet
address of a nameserver.

Non-interactive mode is used when the name or Internet address of the host to be looked up is
given as the first argument. The optional second argument specifies the host name or address of a
nameserver.

Due to its arcane user interface and frequently inconsistent behavior, we do not recommend the
use of nslookup. Use dig instead.

11

3.4. NAMESERVER OPERATIONS CHAPTER 3. NAMESERVER CONFIGURATION

3.4.1.2 Administrative Tools

Administrative tools play an integral part in the management of a server.

named-checkconf The named-checkconf program checks the syntax of a named.conf file.

Usage
named-checkconf [-t directory] [filename]

named-checkzone The named-checkzone program checks a master file for syntax and consistency.

Usage
named-checkzone [-dq] [-c class] zone [filename]

rndc The remote name daemon control (rndc) program allows the system administrator to control the
operation of a nameserver. If you run rndc without any options it will display a usage message as
follows:

Usage
rndc [-c config] [-s server] [-p port] [-y key] command [command...]

The command is one of the following:

reload Reload configuration file and zones.

reload zone [class [view]] Reload the given zone.

refresh zone [class [view]] Schedule zone maintenance for the given zone.

reconfig Reload the configuration file and load new zones, but do not reload existing zone files
even if they have changed. This is faster than a full reload when there is a large number of
zones because it avoids the need to examine the modification times of the zones files.

stats Write server statistics to the statistics file.

querylog Toggle query logging. Query logging can also be enabled by explicitly directing the
queries category to a channel in the logging section of named.conf.

dumpdb Dump the server’s caches to the dump file.

stop Stop the server, making sure any recent changes made through dynamic update or IXFR are
first saved to the master files of the updated zones.

halt Stop the server immediately. Recent changes made through dynamic update or IXFR are
not saved to the master files, but will be rolled forward from the journal files when the server
is restarted.

trace Increment the servers debugging level by one.

trace level Sets the server’s debugging level to an explicit value.

notrace Sets the server’s debugging level to 0.

12

CHAPTER 3. NAMESERVER CONFIGURATION 3.4. NAMESERVER OPERATIONS

flush Flushes the server’s cache.

status Display status of the server. Note the number of zones includes the internal bind/CH
zone and the default ./IN hint zone if there is not a explicit root zone configured.

In BIND 9.2, rndc supports all the commands of the BIND 8 ndc utility except ndc start, which
was also not supported in ndc’s channel mode.

A configuration file is required, since all communication with the server is authenticated with
digital signatures that rely on a shared secret, and there is no way to provide that secret other than
with a configuration file. The default location for the rndc configuration file is /etc/rndc.conf,
but an alternate location can be specified with the -c option. If the configuration file is not found,
rndc will also look in /etc/rndc.key (or whatever sysconfdir was defined when the BIND
build was configured). The rndc.key file is generated by running rndc-confgen -a as described
in Section 6.2.4.

The format of the configuration file is similar to that of named.conf, but limited to only four
statements, the options, key, server and include statements. These statements are what associate
the secret keys to the servers with which they are meant to be shared. The order of statements is
not significant.

The options statement has three clauses: default-server, default-key, and default-port. default-
server takes a host name or address argument and represents the server that will be contacted if
no -s option is provided on the command line. default-key takes the name of key as its argument,
as defined by a key statement. default-port specifies the port to which rndc should connect if no
port is given on the command line or in a server statement.

The key statement names a key with its string argument. The string is required by the server to be
a valid domain name, though it need not actually be hierarchical; thus, a string like ”rndc key” is
a valid name. The key statement has two clauses: algorithm and secret. While the configuration
parser will accept any string as the argument to algorithm, currently only the string ”hmac-md5”
has any meaning. The secret is a base-64 encoded string.

The server statement uses the key clause to associate a key-defined key with a server. The argu-
ment to the server statement is a host name or address (addresses must be double quoted). The
argument to the key clause is the name of the key as defined by the key statement. The port clause
can be used to specify the port to which rndc should connect on the given server.

A sample minimal configuration file is as follows:

key rndc_key {
algorithm "hmac-md5";
secret "c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1hZGUgZm9yIGEgd29tYW4K";

};
options {

default-server localhost;
default-key rndc_key;

};

This file, if installed as /etc/rndc.conf, would allow the command:

$rndc reload

to connect to 127.0.0.1 port 953 and cause the nameserver to reload, if a nameserver on the local
machine were running with following controls statements:

controls {
inet 127.0.0.1 allow { localhost; } keys { rndc_key; };

};

13

3.4. NAMESERVER OPERATIONS CHAPTER 3. NAMESERVER CONFIGURATION

and it had an identical key statement for rndc key.

Running the rndc-confgen program will conveniently create a rndc.conf file for you, and also
display the corresponding controls statement that you need to add to named.conf. Alternatively,
you can run rndc-confgen -a to set up a rndc.key file and not modify named.conf at all.

3.4.2 Signals

Certain UNIX signals cause the name server to take specific actions, as described in the following table.
These signals can be sent using the kill command.

SIGHUP Causes the server to read named.conf and reload the database.
SIGTERM Causes the server to clean up and exit.
SIGINT Causes the server to clean up and exit.

14

Chapter 4

Advanced Concepts

4.1 Dynamic Update

Dynamic update is the term used for the ability under certain specified conditions to add, modify or
delete records or RRsets in the master zone files. Dynamic update is fully described in RFC 2136.

Dynamic update is enabled on a zone-by-zone basis, by including an allow-update or update-policy
clause in the zone statement.

Updating of secure zones (zones using DNSSEC) follows RFC 3007: SIG and NXT records affected by
updates are automatically regenerated by the server using an online zone key. Update authorization is
based on transaction signatures and an explicit server policy.

4.1.1 The journal file

All changes made to a zone using dynamic update are stored in the zone’s journal file. This file is
automatically created by the server when the first dynamic update takes place. The name of the journal
file is formed by appending the extension .jnl to the name of the corresponding zone file. The journal
file is in a binary format and should not be edited manually.

The server will also occasionally write (”dump”) the complete contents of the updated zone to its zone
file. This is not done immediately after each dynamic update, because that would be too slow when
a large zone is updated frequently. Instead, the dump is delayed by 15 minutes, allowing additional
updates to take place.

When a server is restarted after a shutdown or crash, it will replay the journal file to incorporate into the
zone any updates that took place after the last zone dump.

Changes that result from incoming incremental zone transfers are also journalled in a similar way.

The zone files of dynamic zones cannot normally be edited by hand because they are not guaranteed to
contain the most recent dynamic changes - those are only in the journal file. The only way to ensure that
the zone file of a dynamic zone is up to date is to run rndc stop.

If you have to make changes to a dynamic zone manually, the following procedure will work: Shut
down the server using rndc stop (sending a signal or using rndc halt is not sufficient). Wait for the
server to exit, then remove the zone’s .jnl file, edit the zone file, and restart the server. Removing the .
jnl file is necessary because the manual edits will not be present in the journal, rendering it inconsistent
with the contents of the zone file.

15

4.2. INCREMENTAL ZONE TRANSFERS (IXFR) CHAPTER 4. ADVANCED CONCEPTS

4.2 Incremental Zone Transfers (IXFR)

The incremental zone transfer (IXFR) protocol is a way for slave servers to transfer only changed data,
instead of having to transfer the entire zone. The IXFR protocol is documented in RFC 1995. See [Pro-
posed Standards].

When acting as a master, BIND 9 supports IXFR for those zones where the necessary change history
information is available. These include master zones maintained by dynamic update and slave zones
whose data was obtained by IXFR, but not manually maintained master zones nor slave zones obtained
by performing a full zone transfer (AXFR).

When acting as a slave, BIND 9 will attempt to use IXFR unless it is explicitly disabled. For more
information about disabling IXFR, see the description of the request-ixfr clause of the server statement.

4.3 Split DNS

Setting up different views, or visibility, of DNS space to internal and external resolvers is usually referred
to as a Split DNS setup. There are several reasons an organization would want to set up its DNS this
way.

One common reason for setting up a DNS system this way is to hide ”internal” DNS information from
”external” clients on the Internet. There is some debate as to whether or not this is actually useful.
Internal DNS information leaks out in many ways (via email headers, for example) and most savvy
”attackers” can find the information they need using other means.

Another common reason for setting up a Split DNS system is to allow internal networks that are behind
filters or in RFC 1918 space (reserved IP space, as documented in RFC 1918) to resolve DNS on the
Internet. Split DNS can also be used to allow mail from outside back in to the internal network.

Here is an example of a split DNS setup:

Let’s say a company named Example, Inc. (example.com) has several corporate sites that have an inter-
nal network with reserved Internet Protocol (IP) space and an external demilitarized zone (DMZ), or
”outside” section of a network, that is available to the public.

Example, Inc. wants its internal clients to be able to resolve external hostnames and to exchange mail
with people on the outside. The company also wants its internal resolvers to have access to certain
internal-only zones that are not available at all outside of the internal network.

In order to accomplish this, the company will set up two sets of nameservers. One set will be on the
inside network (in the reserved IP space) and the other set will be on bastion hosts, which are ”proxy”
hosts that can talk to both sides of its network, in the DMZ.

The internal servers will be configured to forward all queries, except queries for site1.internal,
site2.internal, site1.example.com, and site2.example.com, to the servers in the DMZ.
These internal servers will have complete sets of information for site1.example.com, site2.example.
com,site1.internal, and site2.internal.

To protect the site1.internal and site2.internal domains, the internal nameservers must be
configured to disallow all queries to these domains from any external hosts, including the bastion hosts.

The external servers, which are on the bastion hosts, will be configured to serve the ”public” version
of the site1 and site2.example.com zones. This could include things such as the host records for
public servers (www.example.com and ftp.example.com), and mail exchange (MX) records (a.mx.
example.com and b.mx.example.com).

In addition, the public site1 and site2.example.com zones should have special MX records that
contain wildcard (‘*’) records pointing to the bastion hosts. This is needed because external mail servers
do not have any other way of looking up how to deliver mail to those internal hosts. With the wildcard
records, the mail will be delivered to the bastion host, which can then forward it on to internal hosts.

Here’s an example of a wildcard MX record:

16

CHAPTER 4. ADVANCED CONCEPTS 4.3. SPLIT DNS

* IN MX 10 external1.example.com.

Now that they accept mail on behalf of anything in the internal network, the bastion hosts will need
to know how to deliver mail to internal hosts. In order for this to work properly, the resolvers on the
bastion hosts will need to be configured to point to the internal nameservers for DNS resolution.

Queries for internal hostnames will be answered by the internal servers, and queries for external host-
names will be forwarded back out to the DNS servers on the bastion hosts.

In order for all this to work properly, internal clients will need to be configured to query only the internal
nameservers for DNS queries. This could also be enforced via selective filtering on the network.

If everything has been set properly, Example, Inc.’s internal clients will now be able to:

• Look up any hostnames in the site1 and site2.example.com zones.

• Look up any hostnames in the site1.internal and site2.internal domains.

• Look up any hostnames on the Internet.

• Exchange mail with internal AND external people.

Hosts on the Internet will be able to:

• Look up any hostnames in the site1 and site2.example.com zones.

• Exchange mail with anyone in the site1 and site2.example.com zones.

Here is an example configuration for the setup we just described above. Note that this is only configu-
ration information; for information on how to configure your zone files, see Section 3.1.

Internal DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { bastion-ips-go-here; };

options {
...
...
forward only;
forwarders { // forward to external servers

bastion-ips-go-here;
};
allow-transfer { none; }; // sample allow-transfer (no one)
allow-query { internals; externals; }; // restrict query access
allow-recursion { internals; }; // restrict recursion
...
...

};

zone "site1.example.com" { // sample master zone
type master;
file "m/site1.example.com";
forwarders { }; // do normal iterative

// resolution (do not forward)
allow-query { internals; externals; };
allow-transfer { internals; };

};

zone "site2.example.com" {
type slave;
file "s/site2.example.com";
masters { 172.16.72.3; };

17

4.3. SPLIT DNS CHAPTER 4. ADVANCED CONCEPTS

forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };

};

zone "site1.internal" {
type master;
file "m/site1.internal";
forwarders { };
allow-query { internals; };
allow-transfer { internals; }

};

zone "site2.internal" {
type slave;
file "s/site2.internal";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals };
allow-transfer { internals; }

};

External (bastion host) DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { bastion-ips-go-here; };

options {
...
...
allow-transfer { none; }; // sample allow-transfer (no one)
allow-query { internals; externals; }; // restrict query access
allow-recursion { internals; externals; }; // restrict recursion
...
...

};

zone "site1.example.com" { // sample slave zone
type master;
file "m/site1.foo.com";
allow-query { any; };
allow-transfer { internals; externals; };

};

zone "site2.example.com" {
type slave;
file "s/site2.foo.com";
masters { another_bastion_host_maybe; };
allow-query { any; };
allow-transfer { internals; externals; }

};

In the resolv.conf (or equivalent) on the bastion host(s):

search ...
nameserver 172.16.72.2

18

CHAPTER 4. ADVANCED CONCEPTS 4.4. TSIG

nameserver 172.16.72.3
nameserver 172.16.72.4

4.4 TSIG

This is a short guide to setting up Transaction SIGnatures (TSIG) based transaction security in BIND. It
describes changes to the configuration file as well as what changes are required for different features,
including the process of creating transaction keys and using transaction signatures with BIND.

BIND primarily supports TSIG for server to server communication. This includes zone transfer, notify,
and recursive query messages. Resolvers based on newer versions of BIND 8 have limited support for
TSIG.

TSIG might be most useful for dynamic update. A primary server for a dynamic zone should use access
control to control updates, but IP-based access control is insufficient. Key-based access control is far
superior, see [Proposed Standards]. The nsupdate program supports TSIG via the -k and -y command
line options.

4.4.1 Generate Shared Keys for Each Pair of Hosts

A shared secret is generated to be shared between host1 and host2. An arbitrary key name is chosen:
”host1-host2.”. The key name must be the same on both hosts.

4.4.1.1 Automatic Generation

The following command will generate a 128 bit (16 byte) HMAC-MD5 key as described above. Longer
keys are better, but shorter keys are easier to read. Note that the maximum key length is 512 bits; keys
longer than that will be digested with MD5 to produce a 128 bit key.

dnssec-keygen -a hmac-md5 -b 128 -n HOST host1-host2.

The key is in the file Khost1-host2.+157+00000.private. Nothing directly uses this file, but the
base-64 encoded string following ”Key:” can be extracted from the file and used as a shared secret:

Key: La/E5CjG9O+os1jq0a2jdA==

The string ”La/E5CjG9O+os1jq0a2jdA==” can be used as the shared secret.

4.4.1.2 Manual Generation

The shared secret is simply a random sequence of bits, encoded in base-64. Most ASCII strings are valid
base-64 strings (assuming the length is a multiple of 4 and only valid characters are used), so the shared
secret can be manually generated.

Also, a known string can be run through mmencode or a similar program to generate base-64 encoded
data.

4.4.2 Copying the Shared Secret to Both Machines

This is beyond the scope of DNS. A secure transport mechanism should be used. This could be secure
FTP, ssh, telephone, etc.

19

4.4. TSIG CHAPTER 4. ADVANCED CONCEPTS

4.4.3 Informing the Servers of the Key’s Existence

Imagine host1 and host 2 are both servers. The following is added to each server’s named.conf file:

key host1-host2. {
algorithm hmac-md5;
secret "La/E5CjG9O+os1jq0a2jdA==";

};

The algorithm, hmac-md5, is the only one supported by BIND. The secret is the one generated above.
Since this is a secret, it is recommended that either named.conf be non-world readable, or the key
directive be added to a non-world readable file that is included by named.conf.

At this point, the key is recognized. This means that if the server receives a message signed by this key,
it can verify the signature. If the signature succeeds, the response is signed by the same key.

4.4.4 Instructing the Server to Use the Key

Since keys are shared between two hosts only, the server must be told when keys are to be used. The
following is added to the named.conf file for host1, if the IP address of host2 is 10.1.2.3:

server 10.1.2.3 {
keys { host1-host2. ;};

};

Multiple keys may be present, but only the first is used. This directive does not contain any secrets, so
it may be in a world-readable file.

If host1 sends a message that is a request to that address, the message will be signed with the specified
key. host1 will expect any responses to signed messages to be signed with the same key.

A similar statement must be present in host2’s configuration file (with host1’s address) for host2 to sign
request messages to host1.

4.4.5 TSIG Key Based Access Control

BIND allows IP addresses and ranges to be specified in ACL definitions and allow-{ query | transfer |
update } directives. This has been extended to allow TSIG keys also. The above key would be denoted
key host1-host2.

An example of an allow-update directive would be:

allow-update { key host1-host2. ;};

This allows dynamic updates to succeed only if the request was signed by a key named ”host1-host2.”.

You may want to read about the more powerful update-policy statement in Section 6.2.22.4.

4.4.6 Errors

The processing of TSIG signed messages can result in several errors. If a signed message is sent to a non-
TSIG aware server, a FORMERR (format error) will be returned, since the server will not understand the
record. This is a result of misconfiguration, since the server must be explicitly configured to send a TSIG
signed message to a specific server.

20

CHAPTER 4. ADVANCED CONCEPTS 4.5. TKEY

If a TSIG aware server receives a message signed by an unknown key, the response will be unsigned
with the TSIG extended error code set to BADKEY. If a TSIG aware server receives a message with a
signature that does not validate, the response will be unsigned with the TSIG extended error code set
to BADSIG. If a TSIG aware server receives a message with a time outside of the allowed range, the
response will be signed with the TSIG extended error code set to BADTIME, and the time values will be
adjusted so that the response can be successfully verified. In any of these cases, the message’s rcode is
set to NOTAUTH (not authenticated).

4.5 TKEY

TKEY is a mechanism for automatically generating a shared secret between two hosts. There are several
”modes” of TKEY that specify how the key is generated or assigned. BIND implements only one of
these modes, the Diffie-Hellman key exchange. Both hosts are required to have a Diffie-Hellman KEY
record (although this record is not required to be present in a zone). The TKEY process must use signed
messages, signed either by TSIG or SIG(0). The result of TKEY is a shared secret that can be used to sign
messages with TSIG. TKEY can also be used to delete shared secrets that it had previously generated.

The TKEY process is initiated by a client or server by sending a signed TKEY query (including any
appropriate KEYs) to a TKEY-aware server. The server response, if it indicates success, will contain a
TKEY record and any appropriate keys. After this exchange, both participants have enough information
to determine the shared secret; the exact process depends on the TKEY mode. When using the Diffie-
Hellman TKEY mode, Diffie-Hellman keys are exchanged, and the shared secret is derived by both
participants.

4.6 SIG(0)

BIND 9 partially supports DNSSEC SIG(0) transaction signatures as specified in RFC 2535. SIG(0) uses
public/private keys to authenticate messages. Access control is performed in the same manner as TSIG
keys; privileges can be granted or denied based on the key name.

When a SIG(0) signed message is received, it will only be verified if the key is known and trusted by the
server; the server will not attempt to locate and/or validate the key.

SIG(0) signing of multiple-message TCP streams is not supported.

BIND 9 does not ship with any tools that generate SIG(0) signed messages.

4.7 DNSSEC

Cryptographic authentication of DNS information is possible through the DNS Security (DNSSEC) ex-
tensions, defined in RFC 2535. This section describes the creation and use of DNSSEC signed zones.

In order to set up a DNSSEC secure zone, there are a series of steps which must be followed. BIND 9
ships with several tools that are used in this process, which are explained in more detail below. In all
cases, the ”-h” option prints a full list of parameters. Note that the DNSSEC tools require the keyset
and signedkey files to be in the working directory, and that the tools shipped with BIND 9.0.x are not
fully compatible with the current ones.

There must also be communication with the administrators of the parent and/or child zone to transmit
keys and signatures. A zone’s security status must be indicated by the parent zone for a DNSSEC
capable resolver to trust its data.

For other servers to trust data in this zone, they must either be statically configured with this zone’s
zone key or the zone key of another zone above this one in the DNS tree.

21

4.7. DNSSEC CHAPTER 4. ADVANCED CONCEPTS

4.7.1 Generating Keys

The dnssec-keygen program is used to generate keys.

A secure zone must contain one or more zone keys. The zone keys will sign all other records in the zone,
as well as the zone keys of any secure delegated zones. Zone keys must have the same name as the
zone, a name type of ZONE, and must be usable for authentication. It is recommended that zone keys
use a cryptographic algorithm designated as ”mandatory to implement” by the IETF; currently these
are RSASHA1 (which is not yet supported in BIND 9.2) and DSA.

The following command will generate a 768 bit DSA key for the child.example zone:

dnssec-keygen -a DSA -b 768 -n ZONE child.example.

Two output files will be produced: Kchild.example.+003+12345.key and Kchild.example.+
003+12345.private (where 12345 is an example of a key tag). The key file names contain the key
name (child.example.), algorithm (3 is DSA, 1 is RSA, etc.), and the key tag (12345 in this case). The
private key (in the .private file) is used to generate signatures, and the public key (in the .key file) is
used for signature verification.

To generate another key with the same properties (but with a different key tag), repeat the above com-
mand.

The public keys should be inserted into the zone file with $INCLUDE statements, including the .key
files.

4.7.2 Creating a Keyset

The dnssec-makekeyset program is used to create a key set from one or more keys.

Once the zone keys have been generated, a key set must be built for transmission to the administrator of
the parent zone, so that the parent zone can sign the keys with its own zone key and correctly indicate
the security status of this zone. When building a key set, the list of keys to be included and the TTL of
the set must be specified, and the desired signature validity period of the parent’s signature may also be
specified.

The list of keys to be inserted into the key set may also included non-zone keys present at the top of the
zone. dnssec-makekeyset may also be used at other names in the zone.

The following command generates a key set containing the above key and another key similarly gener-
ated, with a TTL of 3600 and a signature validity period of 10 days starting from now.

dnssec-makekeyset -t 3600 -e +864000 Kchild.example.+003+12345 Kchild.example.
+003+23456

One output file is produced: keyset-child.example.. This file should be transmitted to the parent
to be signed. It includes the keys, as well as signatures over the key set generated by the zone keys
themselves, which are used to prove ownership of the private keys and encode the desired validity
period.

4.7.3 Signing the Child’s Keyset

The dnssec-signkey program is used to sign one child’s keyset.

If the child.example zone has any delegations which are secure, for example, grand.child.example,
the child.example administrator should receive keyset files for each secure subzone. These keys must
be signed by this zone’s zone keys.

The following command signs the child’s key set with the zone keys:

dnssec-signkey keyset-grand.child.example. Kchild.example.+003+12345 Kchild.
example.+003+23456

22

CHAPTER 4. ADVANCED CONCEPTS 4.8. IPV6 SUPPORT IN BIND 9

One output file is produced: signedkey-grand.child.example.. This file should be both trans-
mitted back to the child and retained. It includes all keys (the child’s keys) from the keyset file and
signatures generated by this zone’s zone keys.

4.7.4 Signing the Zone

The dnssec-signzone program is used to sign a zone.

Any signedkey files corresponding to secure subzones should be present, as well as a signedkey
file for this zone generated by the parent (if there is one). The zone signer will generate NXT and SIG
records for the zone, as well as incorporate the zone key signature from the parent and indicate the
security status at all delegation points.

The following command signs the zone, assuming it is in a file called zone.child.example. By
default, all zone keys which have an available private key are used to generate signatures.

dnssec-signzone -o child.example zone.child.example

One output file is produced: zone.child.example.signed. This file should be referenced by named.
conf as the input file for the zone.

4.7.5 Configuring Servers

Unlike in BIND 8, data is not verified on load in BIND 9, so zone keys for authoritative zones do not
need to be specified in the configuration file.

The public key for any security root must be present in the configuration file’s trusted-keys statement,
as described later in this document.

4.8 IPv6 Support in BIND 9

BIND 9 fully supports all currently defined forms of IPv6 name to address and address to name lookups.
It will also use IPv6 addresses to make queries when running on an IPv6 capable system.

For forward lookups, BIND 9 supports both A6 and AAAA records. The use of A6 records has been
moved to experimental (RFC 3363) and should be treated as deprecated.

The use of ”bitstring” labels for IPv6 has been moved to experimental (RFC 3363) reverting to a nibble
format. The suffix for the IPv6 reverse lookups has also changed from IP6.INT to IP6.ARPA (RFC
3152).

BIND 9 now defaults to nibble IP6.ARPA format lookups.

BIND 9 includes a new lightweight resolver library and resolver daemon which new applications may
choose to use to avoid the complexities of A6 chain following and bitstring labels, see Chapter 5, “The
BIND 9 Lightweight Resolver”.

For an overview of the format and structure of IPv6 addresses, see Section A.3.1.

4.8.1 Address Lookups Using AAAA Records

The AAAA record is a parallel to the IPv4 A record. It specifies the entire address in a single record. For
example,

$ORIGIN example.com.
host 3600 IN AAAA 2001:db8::1

23

4.8. IPV6 SUPPORT IN BIND 9 CHAPTER 4. ADVANCED CONCEPTS

4.8.2 Address to Name Lookups Using Nibble Format

When looking up an address in nibble format, the address components are simply reversed, just as in
IPv4, and IP6.ARPA. is appended to the resulting name. For example, the following would provide
reverse name lookup for a host with address 2001:db8::1.

$ORIGIN 0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 14400 IN PTR host.example.com.

24

Chapter 5

The BIND 9 Lightweight Resolver

5.1 The Lightweight Resolver Library

Traditionally applications have been linked with a stub resolver library that sends recursive DNS queries
to a local caching name server.

IPv6 introduces new complexity into the resolution process, such as following A6 chains and DNAME
records, and simultaneous lookup of IPv4 and IPv6 addresses. These are hard or impossible to imple-
ment in a traditional stub resolver.

Instead, BIND 9 provides resolution services to local clients using a combination of a lightweight re-
solver library and a resolver daemon process running on the local host. These communicate using a
simple UDP-based protocol, the ”lightweight resolver protocol” that is distinct from and simpler than
the full DNS protocol.

5.2 Running a Resolver Daemon

To use the lightweight resolver interface, the system must run the resolver daemon lwresd.

By default, applications using the light-weight resolver library will make UDP requests to the IPv4
loopback address (127.0.0.1) on port 921. The address can be overridden by lwserver lines in /etc/
resolv.conf. The daemon will try to find the answer to the questions ”what are the addresses for
host foo.example.com?” and ”what are the names for IPv4 address 10.1.2.3?”

The daemon currently only looks in the DNS, but in the future it may use other sources such as /etc/
hosts, NIS, etc.

The lwresd daemon is essentially a caching-only name server that answers requests using the lightweight
resolver protocol rather than the DNS protocol. Because it needs to run on each host, it is designed to
require no or minimal configuration. Unless configured otherwise, it uses the name servers listed on
nameserver lines in /etc/resolv.conf as forwarders, but is also capable of doing the resolution
autonomously if none are specified.

The lwresd daemon may also be configured with a named.conf style configuration file, in /etc/
lwresd.conf by default. A name server may also be configured to act as a lightweight resolver dae-
mon using the lwres statement in named.conf.

25

Chapter 6

BIND 9 Configuration Reference

BIND 9 configuration is broadly similar to BIND 8.x; however, there are a few new areas of configura-
tion, such as views. BIND 8.x configuration files should work with few alterations in BIND 9, although
more complex configurations should be reviewed to check if they can be more efficiently implemented
using the new features found in BIND 9.

BIND 4 configuration files can be converted to the new format using the shell script contrib/named-
bootconf/named-bootconf.sh.

6.1 Configuration File Elements

Following is a list of elements used throughout the BIND configuration file documentation:

acl name The name of an address match list as defined by the acl
statement.

address match list A list of one or more ip addr, ip prefix, key id, or
acl name elements, see Section 6.1.1.

domain name A quoted string which will be used as a DNS name, for exam-
ple ”my.test.domain”.

dotted decimal One or more integers valued 0 through 255 separated only by
dots (‘.’), such as 123, 45.67 or 89.123.45.67.

ip4 addr An IPv4 address with exactly four elements in
dotted decimal notation.

ip6 addr An IPv6 address, such as 2001:db8::1234.
ip addr An ip4 addr or ip6 addr.
ip port An IP port number. number is limited to 0 through 65535,

with values below 1024 typically restricted to root-owned pro-
cesses. In some cases an asterisk (‘*’) character can be used as
a placeholder to select a random high-numbered port.

ip prefix An IP network specified as an ip addr, followed by a slash
(‘/’) and then the number of bits in the netmask. Trailing
zeros in a ip addr may omitted. For example, 127/8 is the
network 127.0.0.0 with netmask 255.0.0.0 and 1.2.3.0/28 is net-
work 1.2.3.0 with netmask 255.255.255.240.

key id A domain name representing the name of a shared key, to be
used for transaction security.

key list A list of one or more key ids, separated by semicolons and
ending with a semicolon.

number A non-negative 32 bit unsigned integer (i.e., a number be-
tween 0 and 4294967295, inclusive). Its acceptable value might
further be limited by the context in which it is used.

27

6.1. CONFIGURATION FILE ELEMENTS CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

path name A quoted string which will be used as a pathname, such as
zones/master/my.test.domain.

size spec A number, the word unlimited, or the word default.
An unlimited size spec requests unlimited use, or the
maximum available amount. A default size spec uses
the limit that was in force when the server was started.
A number can optionally be followed by a scaling factor: K
or k for kilobytes, M or m for megabytes, and G or g for gi-
gabytes, which scale by 1024, 1024*1024, and 1024*1024*1024
respectively.
The value must be representable as a 64-bit unsigned integer
(0 to 18446744073709551615, inclusive). Using unlimited is
the best way to safely set a really large number.

yes or no Either yes or no. The words true and false are also ac-
cepted, as are the numbers 1 and 0.

dialup option One of yes, no, notify, notify-passive, refresh
or passive. When used in a zone, notify-passive,
refresh, and passive are restricted to slave and stub zones.

6.1.1 Address Match Lists

6.1.1.1 Syntax

address_match_list = address_match_list_element ;
address_match_list_element; ...

address_match_list_element = ! (ip_address /length |
key key_id | acl_name | { address_match_list })

6.1.1.2 Definition and Usage

Address match lists are primarily used to determine access control for various server operations. They
are also used to define priorities for querying other nameservers and to set the addresses on which
named will listen for queries. The elements which constitute an address match list can be any of the
following:

• an IP address (IPv4 or IPv6)

• an IP prefix (in the ‘/’-notation)

• a key ID, as defined by the key statement

• the name of an address match list defined with the acl statement

• a nested address match list enclosed in braces

Elements can be negated with a leading exclamation mark (‘!’) and the match list names ”any,” ”none,”
”localhost” and ”localnets” are predefined. More information on those names can be found in the de-
scription of the acl statement.

The addition of the key clause made the name of this syntactic element something of a misnomer, since
security keys can be used to validate access without regard to a host or network address. Nonetheless,
the term ”address match list” is still used throughout the documentation.

When a given IP address or prefix is compared to an address match list, the list is traversed in order
until an element matches. The interpretation of a match depends on whether the list is being used for
access control, defining listen-on ports, or as a topology, and whether the element was negated.

28

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.1. CONFIGURATION FILE ELEMENTS

When used as an access control list, a non-negated match allows access and a negated match denies
access. If there is no match, access is denied. The clauses allow-notify, allow-query, allow-transfer,
allow-update and blackhole all use address match lists this. Similarly, the listen-on option will cause
the server to not accept queries on any of the machine’s addresses which do not match the list.

When used with the topology clause, a non-negated match returns a distance based on its position on
the list (the closer the match is to the start of the list, the shorter the distance is between it and the
server). A negated match will be assigned the maximum distance from the server. If there is no match,
the address will get a distance which is further than any non-negated list element, and closer than any
negated element.

Because of the first-match aspect of the algorithm, an element that defines a subset of another element in
the list should come before the broader element, regardless of whether either is negated. For example,
in 1.2.3/24; ! 1.2.3.13; the 1.2.3.13 element is completely useless because the algorithm will match any
lookup for 1.2.3.13 to the 1.2.3/24 element. Using ! 1.2.3.13; 1.2.3/24 fixes that problem by having 1.2.3.13
blocked by the negation but all other 1.2.3.* hosts fall through.

6.1.2 Comment Syntax

The BIND 9 comment syntax allows for comments to appear anywhere that white space may appear
in a BIND configuration file. To appeal to programmers of all kinds, they can be written in C, C++, or
shell/perl constructs.

6.1.2.1 Syntax

/* This is a BIND comment as in C */

// This is a BIND comment as in C++

This is a BIND comment as in common UNIX shells and perl

6.1.2.2 Definition and Usage

Comments may appear anywhere that white space may appear in a BIND configuration file.

C-style comments start with the two characters /* (slash, star) and end with */ (star, slash). Because
they are completely delimited with these characters, they can be used to comment only a portion of a
line or to span multiple lines.

C-style comments cannot be nested. For example, the following is not valid because the entire comment
ends with the first */:

/* This is the start of a comment.
This is still part of the comment.

/* This is an incorrect attempt at nesting a comment. */
This is no longer in any comment. */

C++-style comments start with the two characters // (slash, slash) and continue to the end of the phys-
ical line. They cannot be continued across multiple physical lines; to have one logical comment span
multiple lines, each line must use the // pair.

For example:

// This is the start of a comment. The next line
// is a new comment, even though it is logically
// part of the previous comment.

Shell-style (or perl-style, if you prefer) comments start with the character # (number sign) and continue
to the end of the physical line, as in C++ comments.

29

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

For example:

This is the start of a comment. The next line
is a new comment, even though it is logically
part of the previous comment.

WARNING

WARNING: you cannot use the semicolon (‘;’) character to start a comment such
as you would in a zone file. The semicolon indicates the end of a configuration
statement.

6.2 Configuration File Grammar

A BIND 9 configuration consists of statements and comments. Statements end with a semicolon. State-
ments and comments are the only elements that can appear without enclosing braces. Many statements
contain a block of substatements, which are also terminated with a semicolon.

The following statements are supported:

acl defines a named IP address matching list, for access control
and other uses.

controls declares control channels to be used by the rndc utility.
include includes a file.
key specifies key information for use in authentication and autho-

rization using TSIG.
logging specifies what the server logs, and where the log messages are

sent.
options controls global server configuration options and sets defaults

for other statements.
server sets certain configuration options on a per-server basis.
trusted-keys defines trusted DNSSEC keys.
view defines a view.
zone defines a zone.

The logging and options statements may only occur once per configuration.

6.2.1 acl Statement Grammar

acl acl-name {
address_match_list

};

6.2.2 acl Statement Definition and Usage

The acl statement assigns a symbolic name to an address match list. It gets its name from a primary use
of address match lists: Access Control Lists (ACLs).

30

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

Note that an address match list’s name must be defined with acl before it can be used elsewhere; no
forward references are allowed.

The following ACLs are built-in:

any Matches all hosts.
none Matches no hosts.
localhost Matches the IPv4 addresses of all network interfaces on the sys-

tem.
localnets Matches any host on an IPv4 network for which the system has an

interface.

The localhost and localnets ACLs do not currently support IPv6 (that is, localhost does not match the
host’s IPv6 addresses, and localnets does not match the host’s attached IPv6 networks) due to the lack
of a standard method of determining the complete set of local IPv6 addresses for a host.

6.2.3 controls Statement Grammar

controls {
inet (ip_addr | *) port ip_port allow { address_match_list }

keys { key_list };
inet ...;

};

6.2.4 controls Statement Definition and Usage

The controls statement declares control channels to be used by system administrators to affect the oper-
ation of the local nameserver. These control channels are used by the rndc utility to send commands to
and retrieve non-DNS results from a nameserver.

An inet control channel is a TCP socket listening at the specified ip port on the specified ip addr, which
can be an IPv4 or IPv6 address. An ip addr of * (asterisk) is interpreted as the IPv4 wildcard address;
connections will be accepted on any of the system’s IPv4 addresses. To listen on the IPv6 wildcard
address, use an ip addr of ::. If you will only use rndc on the local host, using the loopback address
(127.0.0.1 or ::1) is recommended for maximum security.

The ability to issue commands over the control channel is restricted by the allow and keys clauses. Con-
nections to the control channel are permitted based on the address permissions in address match list.
key id members of the address match list are ignored, and instead are interpreted independently based
the key list. Each key id in the key list is allowed to be used to authenticate commands and responses
given over the control channel by digitally signing each message between the server and a command
client (See [Remote Name Daemon Control application] in Section 3.4.1.2). All commands to the control
channel must be signed by one of its specified keys to be honored.

If no controls statement is present, named will set up a default control channel listening on the loopback
address 127.0.0.1 and its IPv6 counterpart ::1. In this case, and also when the controls statement is
present but does not have a keys clause, named will attempt to load the command channel key from the
file rndc.key in /etc (or whatever sysconfdir was specified as when BIND was built). To create a
rndc.key file, run rndc-confgen -a.

The rndc.key feature was created to ease the transition of systems from BIND 8, which did not have
digital signatures on its command channel messages and thus did not have a keys clause. It makes it
possible to use an existing BIND 8 configuration file in BIND 9 unchanged, and still have rndc work the
same way ndc worked in BIND 8, simply by executing the command rndc-confgen -a after BIND 9
is installed.

31

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

Since the rndc.key feature is only intended to allow the backward-compatible usage of BIND 8 con-
figuration files, this feature does not have a high degree of configurability. You cannot easily change the
key name or the size of the secret, so you should make a rndc.conf with your own key if you wish
to change those things. The rndc.key file also has its permissions set such that only the owner of the
file (the user that named is running as) can access it. If you desire greater flexibility in allowing other
users to access rndc commands then you need to create an rndc.conf and make it group readable by
a group that contains the users who should have access.

The UNIX control channel type of BIND 8 is not supported in BIND 9.0, BIND 9.1, BIND 9.2 and BIND
9.3. If it is present in the controls statement from a BIND 8 configuration file, it is ignored and a warning
is logged.

To disable the command channel, use an empty controls statement: controls { };.

6.2.5 include Statement Grammar

include filename;

6.2.6 include Statement Definition and Usage

The include statement inserts the specified file at the point that the include statement is encountered.
The include statement facilitates the administration of configuration files by permitting the reading or
writing of some things but not others. For example, the statement could include private keys that are
readable only by a nameserver.

6.2.7 key Statement Grammar

key key_id {
algorithm string;
secret string;

};

6.2.8 key Statement Definition and Usage

The key statement defines a shared secret key for use with TSIG, see Section 4.4.

The key statement can occur at the top level of the configuration file or inside a view statement. Keys de-
fined in top-level key statements can be used in all views. Keys intended for use in a controls statement
(see Section 6.2.4) must be defined at the top level.

The key id, also known as the key name, is a domain name uniquely identifying the key. It can be used
in a ”server” statement to cause requests sent to that server to be signed with this key, or in address
match lists to verify that incoming requests have been signed with a key matching this name, algorithm,
and secret.

The algorithm id is a string that specifies a security/authentication algorithm. The only algorithm
currently supported with TSIG authentication is hmac-md5. The secret string is the secret to be
used by the algorithm, and is treated as a base-64 encoded string.

6.2.9 logging Statement Grammar

logging {
[channel channel_name {

(file path name
[versions (number | unlimited)]

32

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

[size size spec]
| syslog syslog_facility
| stderr
| null);

[severity (critical | error | warning | notice |
info | debug [level] | dynamic);]

[print-category yes or no;]
[print-severity yes or no;]
[print-time yes or no;]

};]
[category category_name {

channel_name ; [channel_name ; ...]
};]
...

};

6.2.10 logging Statement Definition and Usage

The logging statement configures a wide variety of logging options for the nameserver. Its channel
phrase associates output methods, format options and severity levels with a name that can then be used
with the category phrase to select how various classes of messages are logged.

Only one logging statement is used to define as many channels and categories as are wanted. If there is
no logging statement, the logging configuration will be:

logging {
category "unmatched" { "null"; };
category "default" { "default_syslog"; "default_debug"; };

};

In BIND 9, the logging configuration is only established when the entire configuration file has been
parsed. In BIND 8, it was established as soon as the logging statement was parsed. When the server
is starting up, all logging messages regarding syntax errors in the configuration file go to the default
channels, or to standard error if the ”-g” option was specified.

6.2.10.1 The channel Phrase

All log output goes to one or more channels; you can make as many of them as you want.

Every channel definition must include a destination clause that says whether messages selected for the
channel go to a file, to a particular syslog facility, to the standard error stream, or are discarded. It can
optionally also limit the message severity level that will be accepted by the channel (the default is info),
and whether to include a named-generated time stamp, the category name and/or severity level (the
default is not to include any).

The null destination clause causes all messages sent to the channel to be discarded; in that case, other
options for the channel are meaningless.

The file destination clause directs the channel to a disk file. It can include limitations both on how
large the file is allowed to become, and how many versions of the file will be saved each time the file is
opened.

If you use the versions log file option, then named will retain that many backup versions of the file by
renaming them when opening. For example, if you choose to keep 3 old versions of the file lamers.
log then just before it is opened lamers.log.1 is renamed to lamers.log.2, lamers.log.0 is
renamed to lamers.log.1, and lamers.log is renamed to lamers.log.0. You can say versions
unlimited; to not limit the number of versions. If a size option is associated with the log file, then

33

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

renaming is only done when the file being opened exceeds the indicated size. No backup versions are
kept by default; any existing log file is simply appended.

The size option for files is used to limit log growth. If the file ever exceeds the size, then named will
stop writing to the file unless it has a versions option associated with it. If backup versions are kept, the
files are rolled as described above and a new one begun. If there is no versions option, no more data
will be written to the log until some out-of-band mechanism removes or truncates the log to less than
the maximum size. The default behavior is not to limit the size of the file.

Example usage of the size and versions options:

channel "an_example_channel" {
file "example.log" versions 3 size 20m;
print-time yes;
print-category yes;

};

The syslog destination clause directs the channel to the system log. Its argument is a syslog facility as
described in the syslog man page. Known facilities are kern, user, mail, daemon, auth, syslog, lpr,
news, uucp, cron, authpriv, ftp, local0, local1, local2, local3, local4, local5, local6 and local7, however
not all facilities are supported on all operating systems. How syslog will handle messages sent to this
facility is described in the syslog.conf man page. If you have a system which uses a very old version of
syslog that only uses two arguments to the openlog() function, then this clause is silently ignored.

The severity clause works like syslog’s ”priorities,” except that they can also be used if you are writing
straight to a file rather than using syslog. Messages which are not at least of the severity level given will
not be selected for the channel; messages of higher severity levels will be accepted.

If you are using syslog, then the syslog.conf priorities will also determine what eventually passes
through. For example, defining a channel facility and severity as daemon and debug but only log-
ging daemon.warning via syslog.conf will cause messages of severity info and notice to be dropped.
If the situation were reversed, with named writing messages of only warning or higher, then syslogd
would print all messages it received from the channel.

The stderr destination clause directs the channel to the server’s standard error stream. This is intended
for use when the server is running as a foreground process, for example when debugging a configura-
tion.

The server can supply extensive debugging information when it is in debugging mode. If the server’s
global debug level is greater than zero, then debugging mode will be active. The global debug level is
set either by starting the named server with the -d flag followed by a positive integer, or by running
rndc trace. The global debug level can be set to zero, and debugging mode turned off, by running rndc
notrace. All debugging messages in the server have a debug level, and higher debug levels give more
detailed output. Channels that specify a specific debug severity, for example:

channel "specific_debug_level" {
file "foo";
severity debug 3;

};

will get debugging output of level 3 or less any time the server is in debugging mode, regardless of the
global debugging level. Channels with dynamic severity use the server’s global level to determine what
messages to print.

If print-time has been turned on, then the date and time will be logged. print-time may be specified for
a syslog channel, but is usually pointless since syslog also prints the date and time. If print-category is
requested, then the category of the message will be logged as well. Finally, if print-severity is on, then
the severity level of the message will be logged. The print- options may be used in any combination,
and will always be printed in the following order: time, category, severity. Here is an example where all
three print- options are on:

28-Feb-2000 15:05:32.863 general: notice: running

34

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

There are four predefined channels that are used for named’s default logging as follows. How they are
used is described in Section 6.2.10.2.

channel "default_syslog" {
syslog daemon; // send to syslog’s daemon

// facility
severity info; // only send priority info

// and higher
};

channel "default_debug" {
file "named.run"; // write to named.run in

// the working directory
// Note: stderr is used instead
// of "named.run"
// if the server is started
// with the ’-f’ option.

severity dynamic; // log at the server’s
// current debug level

};

channel "default_stderr" { // writes to stderr
stderr;
severity info; // only send priority info

// and higher
};

channel "null" {
null; // toss anything sent to

// this channel
};

The default debug channel has the special property that it only produces output when the server’s
debug level is nonzero. It normally writes to a file called named.run in the server’s working directory.

For security reasons, when the ”-u” command line option is used, the named.run file is created only
after named has changed to the new UID, and any debug output generated while named is starting up
and still running as root is discarded. If you need to capture this output, you must run the server with
the ”-g” option and redirect standard error to a file.

Once a channel is defined, it cannot be redefined. Thus you cannot alter the built-in channels directly,
but you can modify the default logging by pointing categories at channels you have defined.

6.2.10.2 The category Phrase

There are many categories, so you can send the logs you want to see wherever you want, without
seeing logs you don’t want. If you don’t specify a list of channels for a category, then log messages in
that category will be sent to the default category instead. If you don’t specify a default category, the
following ”default default” is used:

category "default" { "default_syslog"; "default_debug"; };

As an example, let’s say you want to log security events to a file, but you also want keep the default
logging behavior. You’d specify the following:

channel "my_security_channel" {
file "my_security_file";
severity info;

};

35

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

category "security" {
"my_security_channel";
"default_syslog";
"default_debug";

};

To discard all messages in a category, specify the null channel:

category "xfer-out" { "null"; };
category "notify" { "null"; };

Following are the available categories and brief descriptions of the types of log information they contain.
More categories may be added in future BIND releases.

default The default category defines the logging options for
those categories where no specific configuration has
been defined.

general The catch-all. Many things still aren’t classified into cat-
egories, and they all end up here.

database Messages relating to the databases used internally by
the name server to store zone and cache data.

security Approval and denial of requests.
config Configuration file parsing and processing.
resolver DNS resolution, such as the recursive lookups per-

formed on behalf of clients by a caching name server.
xfer-in Zone transfers the server is receiving.
xfer-out Zone transfers the server is sending.
notify The NOTIFY protocol.
client Processing of client requests.
unmatched Messages that named was unable to determine the class

of or for which there was no matching view. A one
line summary is also logged to the client category. This
category is best sent to a file or stderr, by default it is
sent to the null channel.

network Network operations.
update Dynamic updates.
queries Queries. Using the category queries will enable query

logging.
dispatch Dispatching of incoming packets to the server modules

where they are to be processed.
dnssec DNSSEC and TSIG protocol processing.
lame-servers Lame servers. These are misconfigurations in remote

servers, discovered by BIND 9 when trying to query
those servers during resolution.

delegation-only Delegation only. Logs queries that have have been
forced to NXDOMAIN as the result of a delegation-
only zone or a delegation-only in a hint or stub zone
declartation.

6.2.11 lwres Statement Grammar

This is the grammar of the lwres statement in the named.conf file:

lwres {
listen-on { ip_addr port ip_port ; ip_addr port ip_port ; ... };
view view_name;

36

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

search { domain_name ; domain_name ; ... };
ndots number;

};

6.2.12 lwres Statement Definition and Usage

The lwres statement configures the name server to also act as a light-weight resolver daemon. (See
Section 5.2.) There may be be multiple lwres statements configuring lightweight resolver servers with
different properties.

The listen-on statement specifies a list of addresses (and ports) that this instance of a lightweight re-
solver daemon should accept requests on. If no port is specified, port 921 is used. If this statement is
omitted, requests will be accepted on 127.0.0.1, port 921.

The view statement binds this instance of a lightweight resolver daemon to a view in the DNS names-
pace, so that the response will be constructed in the same manner as a normal DNS query matching this
view. If this statement is omitted, the default view is used, and if there is no default view, an error is
triggered.

The search statement is equivalent to the search statement in /etc/resolv.conf. It provides a list of
domains which are appended to relative names in queries.

The ndots statement is equivalent to the ndots statement in /etc/resolv.conf. It indicates the min-
imum number of dots in a relative domain name that should result in an exact match lookup before
search path elements are appended.

6.2.13 options Statement Grammar

This is the grammar of the options statement in the named.conf file:

options {
version version_string;
directory path_name;
named-xfer path_name;
tkey-domain domainname;
tkey-dhkey key_name key_tag;
dump-file path_name;
memstatistics-file path_name;
pid-file path_name;
statistics-file path_name;
zone-statistics yes_or_no;
auth-nxdomain yes_or_no;
deallocate-on-exit yes_or_no;
dialup dialup_option;
fake-iquery yes_or_no;
fetch-glue yes_or_no;
has-old-clients yes_or_no;
host-statistics yes_or_no;
host-statistics-max number;
minimal-responses yes_or_no;
multiple-cnames yes_or_no;
notify yes_or_no | explicit;
recursion yes_or_no;
rfc2308-type1 yes_or_no;
use-id-pool yes_or_no;
maintain-ixfr-base yes_or_no;
forward (only | first);
forwarders { ip_addr port ip_port ; ... };

37

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

check-names (master | slave | response)(warn | fail | ignore);
allow-notify { address_match_list };
allow-query { address_match_list };
allow-transfer { address_match_list };
allow-recursion { address_match_list };
allow-v6-synthesis { address_match_list };
blackhole { address_match_list };
listen-on port ip_port { address_match_list };
listen-on-v6 port ip_port { address_match_list };
query-source address (ip_addr | *) port (ip_port | *) ;
query-source-v6 address (ip_addr | *) port (ip_port | *) ;
max-transfer-time-in number;
max-transfer-time-out number;
max-transfer-idle-in number;
max-transfer-idle-out number;
tcp-clients number;
recursive-clients number;
serial-query-rate number;
serial-queries number;
transfer-format (one-answer | many-answers);
transfers-in number;
transfers-out number;
transfers-per-ns number;
transfer-source (ip4_addr | *) port ip_port ;
transfer-source-v6 (ip6_addr | *) port ip_port ;
notify-source (ip4_addr | *) port ip_port ;
notify-source-v6 (ip6_addr | *) port ip_port ;
also-notify { ip_addr port ip_port ; ip_addr port ip_port ; ... };
max-ixfr-log-size number;
coresize size_spec ;
datasize size_spec ;
files size_spec ;
stacksize size_spec ;
cleaning-interval number;
heartbeat-interval number;
interface-interval number;
statistics-interval number;
topology { address_match_list };
sortlist { address_match_list };
rrset-order { order_spec ; order_spec ; ... };
lame-ttl number;
max-ncache-ttl number;
max-cache-ttl number;
sig-validity-interval number ;
min-roots number;
use-ixfr yes_or_no ;
provide-ixfr yes_or_no;
request-ixfr yes_or_no;
treat-cr-as-space yes_or_no ;
min-refresh-time number ;
max-refresh-time number ;
min-retry-time number ;
max-retry-time number ;
port ip_port;
additional-from-auth yes_or_no ;
additional-from-cache yes_or_no ;
random-device path_name ;
max-cache-size size_spec ;
match-mapped-addresses yes_or_no;

38

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

root-delegation-only exclude { namelist
} ;

};

6.2.14 options Statement Definition and Usage

The options statement sets up global options to be used by BIND. This statement may appear only once
in a configuration file. If more than one occurrence is found, the first occurrence determines the actual
options used, and a warning will be generated. If there is no options statement, an options block with
each option set to its default will be used.

version The version the server should report via a query of name version.bind in class CHAOS.
The default is the real version number of this server.

directory The working directory of the server. Any non-absolute pathnames in the configuration file
will be taken as relative to this directory. The default location for most server output files (e.g.
named.run) is this directory. If a directory is not specified, the working directory defaults to ‘.
’, the directory from which the server was started. The directory specified should be an absolute
path.

named-xfer This option is obsolete. It was used in BIND 8 to specify the pathname to the named-xfer
program. In BIND 9, no separate named-xfer program is needed; its functionality is built into the
name server.

tkey-domain The domain appended to the names of all shared keys generated with TKEY. When a
client requests a TKEY exchange, it may or may not specify the desired name for the key. If
present, the name of the shared key will be ”client specified part” + ”tkey-domain”.
Otherwise, the name of the shared key will be ”random hex digits” + ”tkey-domain”. In
most cases, the domainname should be the server’s domain name.

tkey-dhkey The Diffie-Hellman key used by the server to generate shared keys with clients using the
Diffie-Hellman mode of TKEY. The server must be able to load the public and private keys from
files in the working directory. In most cases, the keyname should be the server’s host name.

dump-file The pathname of the file the server dumps the database to when instructed to do so with
rndc dumpdb. If not specified, the default is named dump.db.

memstatistics-file The pathname of the file the server writes memory usage statistics to on exit. If not
specified, the default is named.memstats.

NOTE

Not yet implemented in BIND 9.

pid-file The pathname of the file the server writes its process ID in. If not specified, the default is /
var/run/named.pid. The pid-file is used by programs that want to send signals to the running
nameserver.

39

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

statistics-file The pathname of the file the server appends statistics to when instructed to do so using
rndc stats. If not specified, the default is named.stats in the server’s current directory. The
format of the file is described in Section 6.2.14.15.

port The UDP/TCP port number the server uses for receiving and sending DNS protocol traffic. The
default is 53. This option is mainly intended for server testing; a server using a port other than 53
will not be able to communicate with the global DNS.

random-device The source of entropy to be used by the server. Entropy is primarily needed for DNSSEC
operations, such as TKEY transactions and dynamic update of signed zones. This options speci-
fies the device (or file) from which to read entropy. If this is a file, operations requiring entropy
will fail when the file has been exhausted. If not specified, the default value is /dev/random (or
equivalent) when present, and none otherwise. The random-device option takes effect during the
initial configuration load at server startup time and is ignored on subsequent reloads.

root-delegation-only Turn on enforcment of delegation-only in TLDs and root zones with an optional
exclude list.

Note some TLDs are NOT delegation only (e.g. ”DE”, ”LV”, ”US” and ”MUSEUM”).

options {
root-delegation-only exclude { "de"; "lv"; "us"; "museum"; };

};

6.2.14.1 Boolean Options

auth-nxdomain If yes, then the AA bit is always set on NXDOMAIN responses, even if the server is
not actually authoritative. The default is no; this is a change from BIND 8. If you are using very
old DNS software, you may need to set it to yes.

deallocate-on-exit This option was used in BIND 8 to enable checking for memory leaks on exit. BIND
9 ignores the option and always performs the checks.

dialup If yes, then the server treats all zones as if they are doing zone transfers across a dial on demand
dialup link, which can be brought up by traffic originating from this server. This has different
effects according to zone type and concentrates the zone maintenance so that it all happens in a
short interval, once every heartbeat-interval and hopefully during the one call. It also suppresses
some of the normal zone maintenance traffic. The default is no.

The dialup option may also be specified in the view and zone statements, in which case it over-
rides the global dialup option.

If the zone is a master zone then the server will send out a NOTIFY request to all the slaves. This
will trigger the zone serial number check in the slave (providing it supports NOTIFY) allowing
the slave to verify the zone while the connection is active.

If the zone is a slave or stub zone, then the server will suppress the regular ”zone up to date” (re-
fresh) queries and only perform them when the heartbeat-interval expires in addition to sending
NOTIFY requests.

Finer control can be achieved by using notify which only sends NOTIFY messages, notify-
passive which sends NOTIFY messages and suppresses the normal refresh queries, refresh
which suppresses normal refresh processing and send refresh queries when the heartbeat-interval
expires and passive which just disables normal refresh processing.

40

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

fake-iquery In BIND 8, this option was used to enable simulating the obsolete DNS query type IQUERY.
BIND 9 never does IQUERY simulation.

fetch-glue This option is obsolete. In BIND 8, fetch-glue yes caused the server to attempt to fetch
glue resource records it didn’t have when constructing the additional data section of a response.
This is now considered a bad idea and BIND 9 never does it.

has-old-clients This option was incorrectly implemented in BIND 8, and is ignored by BIND 9. To
achieve the intended effect of has-old-clients yes, specify the two separate options auth-nxdomain
yes and rfc2308-type1 no instead.

host-statistics In BIND 8, this enables keeping of statistics for every host that the nameserver interacts
with. Not implemented in BIND 9.

maintain-ixfr-base This option is obsolete. It was used in BIND 8 to determine whether a transaction log
was kept for Incremental Zone Transfer. BIND 9 maintains a transaction log whenever possible. If
you need to disable outgoing incremental zone transfers, use provide-ixfr no.

minimal-responses If yes, then when generating responses the server will only add records to the au-
thority and additional data sections when they are required (e.g. delegations, negative responses).
This may improve the performance of the server. The default is no.

multiple-cnames This option was used in BIND 8 to allow a domain name to allow multiple CNAME
records in violation of the DNS standards. BIND 9.2 always strictly enforces the CNAME rules
both in master files and dynamic updates.

notify If yes (the default), DNS NOTIFY messages are sent when a zone the server is authoritative
for changes, see Section 3.3. The messages are sent to the servers listed in the zone’s NS records
(except the master server identified in the SOA MNAME field), and to any servers listed in the
also-notify option.

If explicit, notifies are sent only to servers explicitly listed using also-notify. If no, no notifies
are sent.

The notify option may also be specified in the zone statement, in which case it overrides the
options notify statement. It would only be necessary to turn off this option if it caused slaves to
crash.

recursion If yes, and a DNS query requests recursion, then the server will attempt to do all the work
required to answer the query. If recursion is off and the server does not already know the answer, it
will return a referral response. The default is yes. Note that setting recursion no; does not prevent
clients from getting data from the server’s cache; it only prevents new data from being cached as
an effect of client queries. Caching may still occur as an effect the server’s internal operation, such
as NOTIFY address lookups. See also fetch-glue above.

rfc2308-type1 Setting this to yes will cause the server to send NS records along with the SOA record
for negative answers. The default is no.

41

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

NOTE

Not yet implemented in BIND 9.

use-id-pool This option is obsolete. BIND 9 always allocates query IDs from a pool.

zone-statistics If yes, the server will, by default, collect statistical data on all zones in the server. These
statistics may be accessed using rndc stats, which will dump them to the file listed in the statistics-
file. See also Section 6.2.14.15.

use-ixfr This option is obsolete. If you need to disable IXFR to a particular server or servers see the
information on the provide-ixfr option in Section 6.2.16. See also Section 4.2.

provide-ixfr See the description of provide-ixfr in Section 6.2.16.

request-ixfr See the description of request-ixfr in Section 6.2.16.

treat-cr-as-space This option was used in BIND 8 to make the server treat carriage return (”\r”) charac-
ters the same way as a space or tab character, to facilitate loading of zone files on a UNIX system
that were generated on an NT or DOS machine. In BIND 9, both UNIX ”\n” and NT/DOS ”\r\n”
newlines are always accepted, and the option is ignored.

additional-from-auth, additional-from-cache These options control the behavior of an authoritative
server when answering queries which have additional data, or when following CNAME and
DNAME chains.

When both of these options are set to yes (the default) and a query is being answered from au-
thoritative data (a zone configured into the server), the additional data section of the reply will be
filled in using data from other authoritative zones and from the cache. In some situations this is
undesirable, such as when there is concern over the correctness of the cache, or in servers where
slave zones may be added and modified by untrusted third parties. Also, avoiding the search for
this additional data will speed up server operations at the possible expense of additional queries
to resolve what would otherwise be provided in the additional section.

For example, if a query asks for an MX record for host foo.example.com, and the record found
is ”MX 10 mail.example.net”, normally the address records (A, A6, and AAAA) for mail.
example.net will be provided as well, if known. Setting these options to no disables this behav-
ior.

These options are intended for use in authoritative-only servers, or in authoritative-only views.
Attempts to set them to no without also specifying recursion no; will cause the server to ignore
the options and log a warning message.

Specifying additional-from-cache no actually disables the use of the cache not only for additional
data lookups but also when looking up the answer. This is usually the desired behavior in an
authoritative-only server where the correctness of the cached data is an issue.

When a name server is non-recursively queried for a name that is not below the apex of any served
zone, it normally answers with an ”upwards referral” to the root servers or the servers of some
other known parent of the query name. Since the data in an upwards referral comes from the
cache, the server will not be able to provide upwards referrals when additional-from-cache no
has been specified. Instead, it will respond to such queries with REFUSED. This should not cause
any problems since upwards referrals are not required for the resolution process.

42

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

match-mapped-addresses If yes, then an IPv4-mapped IPv6 address will match any address match
list entries that match the corresponding IPv4 address. Enabling this option is sometimes useful
on IPv6-enabled Linux systems, to work around a kernel quirk that causes IPv4 TCP connections
such as zone transfers to be accepted on an IPv6 socket using mapped addresses, causing address
match lists designed for IPv4 to fail to match. The use of this option for any other purpose is
discouraged.

6.2.14.2 Forwarding

The forwarding facility can be used to create a large site-wide cache on a few servers, reducing traffic
over links to external nameservers. It can also be used to allow queries by servers that do not have
direct access to the Internet, but wish to look up exterior names anyway. Forwarding occurs only on
those queries for which the server is not authoritative and does not have the answer in its cache.

forward This option is only meaningful if the forwarders list is not empty. A value of first, the
default, causes the server to query the forwarders first, and if that doesn’t answer the question
the server will then look for the answer itself. If only is specified, the server will only query the
forwarders.

forwarders Specifies the IP addresses to be used for forwarding. The default is the empty list (no for-
warding).

Forwarding can also be configured on a per-domain basis, allowing for the global forwarding options to
be overridden in a variety of ways. You can set particular domains to use different forwarders, or have
a different forward only/first behavior, or not forward at all, see Section 6.2.21.

6.2.14.3 Access Control

Access to the server can be restricted based on the IP address of the requesting system. See Section 6.1.1
for details on how to specify IP address lists.

allow-notify Specifies which hosts are allowed to notify slaves of a zone change in addition to the zone
masters. allow-notify may also be specified in the zone statement, in which case it overrides the
options allow-notify statement. It is only meaningful for a slave zone. If not specified, the default
is to process notify messages only from a zone’s master.

allow-query Specifies which hosts are allowed to ask ordinary questions. allow-query may also be
specified in the zone statement, in which case it overrides the options allow-query statement. If
not specified, the default is to allow queries from all hosts.

allow-recursion Specifies which hosts are allowed to make recursive queries through this server. If not
specified, the default is to allow recursive queries from all hosts. Note that disallowing recursive
queries for a host does not prevent the host from retrieving data that is already in the server’s
cache.

allow-v6-synthesis Specifies which hosts are to receive synthetic responses to IPv6 queries as described
in Section 6.2.14.13.

allow-transfer Specifies which hosts are allowed to receive zone transfers from the server. allow-
transfer may also be specified in the zone statement, in which case it overrides the options allow-
transfer statement. If not specified, the default is to allow transfers to all hosts.

blackhole Specifies a list of addresses that the server will not accept queries from or use to resolve a
query. Queries from these addresses will not be responded to. The default is none.

43

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

6.2.14.4 Interfaces

The interfaces and ports that the server will answer queries from may be specified using the listen-on
option. listen-on takes an optional port, and an address match list. The server will listen on all
interfaces allowed by the address match list. If a port is not specified, port 53 will be used.

Multiple listen-on statements are allowed. For example,

listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };

will enable the nameserver on port 53 for the IP address 5.6.7.8, and on port 1234 of an address on the
machine in net 1.2 that is not 1.2.3.4.

If no listen-on is specified, the server will listen on port 53 on all interfaces.

The listen-on-v6 option is used to specify the ports on which the server will listen for incoming queries
sent using IPv6.

The server does not bind a separate socket to each IPv6 interface address as it does for IPv4. Instead, it al-
ways listens on the IPv6 wildcard address. Therefore, the only values allowed for the address match list
argument to the listen-on-v6 statement are

{ any; }

and

{ none;}

Multiple listen-on-v6 options can be used to listen on multiple ports:

listen-on-v6 port 53 { any; };
listen-on-v6 port 1234 { any; };

To make the server not listen on any IPv6 address, use

listen-on-v6 { none; };

If no listen-on-v6 statement is specified, the server will not listen on any IPv6 address.

6.2.14.5 Query Address

If the server doesn’t know the answer to a question, it will query other nameservers. query-source
specifies the address and port used for such queries. For queries sent over IPv6, there is a separate
query-source-v6 option. If address is * (asterisk) or is omitted, a wildcard IP address (INADDR ANY)
will be used. If port is * or is omitted, a random unprivileged port will be used. The defaults are

query-source address * port *;
query-source-v6 address * port *;

NOTE

The address specified in the query-source option is used for both UDP and
TCP queries, but the port applies only to UDP queries. TCP queries always use
a random unprivileged port.

44

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

NOTE

See also transfer-source and notify-source.

NOTE

Solaris 2.5.1 and earlier does not support setting the source address for TCP
sockets.

6.2.14.6 Zone Transfers

BIND has mechanisms in place to facilitate zone transfers and set limits on the amount of load that
transfers place on the system. The following options apply to zone transfers.

also-notify Defines a global list of IP addresses of name servers that are also sent NOTIFY messages
whenever a fresh copy of the zone is loaded, in addition to the servers listed in the zone’s NS
records. This helps to ensure that copies of the zones will quickly converge on stealth servers. If
an also-notify list is given in a zone statement, it will override the options also-notify statement.
When a zone notify statement is set to no, the IP addresses in the global also-notify list will not
be sent NOTIFY messages for that zone. The default is the empty list (no global notification list).

max-transfer-time-in Inbound zone transfers running longer than this many minutes will be termi-
nated. The default is 120 minutes (2 hours).

max-transfer-idle-in Inbound zone transfers making no progress in this many minutes will be termi-
nated. The default is 60 minutes (1 hour).

max-transfer-time-out Outbound zone transfers running longer than this many minutes will be termi-
nated. The default is 120 minutes (2 hours).

max-transfer-idle-out Outbound zone transfers making no progress in this many minutes will be ter-
minated. The default is 60 minutes (1 hour).

serial-query-rate Slave servers will periodically query master servers to find out if zone serial numbers
have changed. Each such query uses a minute amount of the slave server’s network bandwidth.
To limit the amount of bandwidth used, BIND 9 limits the rate at which queries are sent. The value
of the serial-query-rate option, an integer, is the maximum number of queries sent per second. The
default is 20.

serial-queries In BIND 8, the serial-queries option set the maximum number of concurrent serial num-
ber queries allowed to be outstanding at any given time. BIND 9 does not limit the number of
outstanding serial queries and ignores the serial-queries option. Instead, it limits the rate at which
the queries are sent as defined using the serial-query-rate option.

45

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

transfer-format Zone transfers can be sent using two different formats, one-answer and many-answers.
The transfer-format option is used on the master server to determine which format it sends. one-
answer uses one DNS message per resource record transferred. many-answers packs as many
resource records as possible into a message. many-answers is more efficient, but is only supported
by relatively new slave servers, such as BIND 9, BIND 8.x and patched versions of BIND 4.9.5. The
many-answers format is also supported by recent Microsoft Windows nameservers. The default
is many-answers. transfer-format may be overridden on a per-server basis by using the server
statement.

transfers-in The maximum number of inbound zone transfers that can be running concurrently. The
default value is 10. Increasing transfers-in may speed up the convergence of slave zones, but it
also may increase the load on the local system.

transfers-out The maximum number of outbound zone transfers that can be running concurrently.
Zone transfer requests in excess of the limit will be refused. The default value is 10.

transfers-per-ns The maximum number of inbound zone transfers that can be concurrently transferring
from a given remote nameserver. The default value is 2. Increasing transfers-per-ns may speed
up the convergence of slave zones, but it also may increase the load on the remote nameserver.
transfers-per-ns may be overridden on a per-server basis by using the transfers phrase of the
server statement.

transfer-source transfer-source determines which local address will be bound to IPv4 TCP connections
used to fetch zones transferred inbound by the server. It also determines the source IPv4 address,
and optionally the UDP port, used for the refresh queries and forwarded dynamic updates. If not
set, it defaults to a system controlled value which will usually be the address of the interface ”clos-
est to” the remote end. This address must appear in the remote end’s allow-transfer option for
the zone being transferred, if one is specified. This statement sets the transfer-source for all zones,
but can be overridden on a per-view or per-zone basis by including a transfer-source statement
within the view or zone block in the configuration file.

transfer-source-v6 The same as transfer-source, except zone transfers are performed using IPv6.

notify-source notify-source determines which local source address, and optionally UDP port, will be
used to send NOTIFY messages. This address must appear in the slave server’s masters zone
clause or in an allow-notify clause. This statement sets the notify-source for all zones, but can
be overridden on a per-zone or per-view basis by including a notify-source statement within the
zone or view block in the configuration file.

NOTE

Solaris 2.5.1 and earlier does not support setting the source address for
TCP sockets.

notify-source-v6 Like notify-source, but applies to notify messages sent to IPv6 addresses.

6.2.14.7 Operating System Resource Limits

The server’s usage of many system resources can be limited. Scaled values are allowed when specifying
resource limits. For example, 1G can be used instead of 1073741824 to specify a limit of one gigabyte.

46

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

unlimited requests unlimited use, or the maximum available amount. default uses the limit that was in
force when the server was started. See the description of size spec in Section 6.1.

The following options set operating system resource limits for the name server process. Some operating
systems don’t support some or any of the limits. On such systems, a warning will be issued if the
unsupported limit is used.

coresize The maximum size of a core dump. The default is default.

datasize The maximum amount of data memory the server may use. The default is default. This is
a hard limit on server memory usage. If the server attempts to allocate memory in excess of this
limit, the allocation will fail, which may in turn leave the server unable to perform DNS service.
Therefore, this option is rarely useful as a way of limiting the amount of memory used by the
server, but it can be used to raise an operating system data size limit that is too small by default. If
you wish to limit the amount of memory used by the server, use the max-cache-size and recursive-
clients options instead.

files The maximum number of files the server may have open concurrently. The default is unlimited.

stacksize The maximum amount of stack memory the server may use. The default is default.

6.2.14.8 Server Resource Limits

The following options set limits on the server’s resource consumption that are enforced internally by
the server rather than the operating system.

max-ixfr-log-size This option is obsolete; it is accepted and ignored for BIND 8 compatibility.

recursive-clients The maximum number of simultaneous recursive lookups the server will perform on
behalf of clients. The default is 1000. Because each recursing client uses a fair bit of memory, on
the order of 20 kilobytes, the value of the recursive-clients option may have to be decreased on
hosts with limited memory.

tcp-clients The maximum number of simultaneous client TCP connections that the server will accept.
The default is 100.

max-cache-size The maximum amount of memory to use for the server’s cache, in bytes. When the
amount of data in the cache reaches this limit, the server will cause records to expire prematurely
so that the limit is not exceeded. In a server with multiple views, the limit applies separately to the
cache of each view. The default is unlimited, meaning that records are purged from the cache
only when their TTLs expire.

6.2.14.9 Periodic Task Intervals

cleaning-interval The server will remove expired resource records from the cache every cleaning-
interval minutes. The default is 60 minutes. If set to 0, no periodic cleaning will occur.

heartbeat-interval The server will perform zone maintenance tasks for all zones marked as dialup
whenever this interval expires. The default is 60 minutes. Reasonable values are up to 1 day
(1440 minutes). If set to 0, no zone maintenance for these zones will occur.

47

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

interface-interval The server will scan the network interface list every interface-interval minutes. The
default is 60 minutes. If set to 0, interface scanning will only occur when the configuration file is
loaded. After the scan, listeners will be started on any new interfaces (provided they are allowed
by the listen-on configuration). Listeners on interfaces that have gone away will be cleaned up.

statistics-interval Nameserver statistics will be logged every statistics-interval minutes. The default is
60. If set to 0, no statistics will be logged.

NOTE

Not yet implemented in BIND9.

6.2.14.10 Topology

All other things being equal, when the server chooses a nameserver to query from a list of name-
servers, it prefers the one that is topologically closest to itself. The topology statement takes an ad-
dress match list and interprets it in a special way. Each top-level list element is assigned a distance.
Non-negated elements get a distance based on their position in the list, where the closer the match is
to the start of the list, the shorter the distance is between it and the server. A negated match will be
assigned the maximum distance from the server. If there is no match, the address will get a distance
which is further than any non-negated list element, and closer than any negated element. For example,

topology {
10/8;
!1.2.3/24;
{ 1.2/16; 3/8; };

};

will prefer servers on network 10 the most, followed by hosts on network 1.2.0.0 (netmask 255.255.0.0)
and network 3, with the exception of hosts on network 1.2.3 (netmask 255.255.255.0), which is preferred
least of all.

The default topology is

topology { localhost; localnets; };

NOTE

The topology option is not implemented in BIND 9.

6.2.14.11 The sortlist Statement

The response to a DNS query may consist of multiple resource records (RRs) forming a resource records
set (RRset). The name server will normally return the RRs within the RRset in an indeterminate order
(but see the rrset-order statement in Section 6.2.14.12). The client resolver code should rearrange the

48

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

RRs as appropriate, that is, using any addresses on the local net in preference to other addresses. How-
ever, not all resolvers can do this or are correctly configured. When a client is using a local server the
sorting can be performed in the server, based on the client’s address. This only requires configuring the
nameservers, not all the clients.

The sortlist statement (see below) takes an address match list and interprets it even more specifically
than the topology statement does (Section 6.2.14.10). Each top level statement in the sortlist must itself
be an explicit address match list with one or two elements. The first element (which may be an IP
address, an IP prefix, an ACL name or a nested address match list) of each top level list is checked
against the source address of the query until a match is found.

Once the source address of the query has been matched, if the top level statement contains only one
element, the actual primitive element that matched the source address is used to select the address in
the response to move to the beginning of the response. If the statement is a list of two elements, then the
second element is treated the same as the address match list in a topology statement. Each top level
element is assigned a distance and the address in the response with the minimum distance is moved to
the beginning of the response.

In the following example, any queries received from any of the addresses of the host itself will get
responses preferring addresses on any of the locally connected networks. Next most preferred are ad-
dresses on the 192.168.1/24 network, and after that either the 192.168.2/24 or 192.168.3/24 network with
no preference shown between these two networks. Queries received from a host on the 192.168.1/24
network will prefer other addresses on that network to the 192.168.2/24 and 192.168.3/24 networks.
Queries received from a host on the 192.168.4/24 or the 192.168.5/24 network will only prefer other
addresses on their directly connected networks.

sortlist {
{ localhost; // IF the local host

{ localnets; // THEN first fit on the
192.168.1/24; // following nets
{ 192.168.2/24; 192.168.3/24; }; }; };

{ 192.168.1/24; // IF on class C 192.168.1
{ 192.168.1/24; // THEN use .1, or .2 or .3

{ 192.168.2/24; 192.168.3/24; }; }; };
{ 192.168.2/24; // IF on class C 192.168.2

{ 192.168.2/24; // THEN use .2, or .1 or .3
{ 192.168.1/24; 192.168.3/24; }; }; };

{ 192.168.3/24; // IF on class C 192.168.3
{ 192.168.3/24; // THEN use .3, or .1 or .2

{ 192.168.1/24; 192.168.2/24; }; }; };
{ { 192.168.4/24; 192.168.5/24; }; // if .4 or .5, prefer that net
};

};

The following example will give reasonable behavior for the local host and hosts on directly connected
networks. It is similar to the behavior of the address sort in BIND 4.9.x. Responses sent to queries from
the local host will favor any of the directly connected networks. Responses sent to queries from any
other hosts on a directly connected network will prefer addresses on that same network. Responses to
other queries will not be sorted.

sortlist {
{ localhost; localnets; };
{ localnets; };

};

6.2.14.12 RRset Ordering

When multiple records are returned in an answer it may be useful to configure the order of the records
placed into the response. The rrset-order statement permits configuration of the ordering of the records
in a multiple record response. See also the sortlist statement, Section 6.2.14.11.

49

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

An order spec is defined as follows:

class class_name type type_name name "domain_name"
order ordering

If no class is specified, the default is ANY. If no type is specified, the default is ANY. If no name is
specified, the default is ”*”.

The legal values for ordering are:

fixed Records are returned in the order they are defined in the zone
file.

random Records are returned in some random order.
cyclic Records are returned in a round-robin order.

For example:

rrset-order {
class IN type A name "host.example.com" order random;
order cyclic;

};

will cause any responses for type A records in class IN that have ”host.example.com” as a suffix, to
always be returned in random order. All other records are returned in cyclic order.

If multiple rrset-order statements appear, they are not combined — the last one applies.

NOTE

The rrset-order statement is not yet implemented in BIND 9. BIND 9 currently
supports only a ”random-cyclic” ordering, where the server randomly chooses a
starting point within the RRset and returns the records in order starting at that
point, wrapping around the end of the RRset if necessary.

6.2.14.13 Synthetic IPv6 responses

Many existing stub resolvers support IPv6 DNS lookups as defined in RFC1886, using AAAA records
for forward lookups and ”nibble labels” in the IP6.INT domain for reverse lookups, but do not support
RFC2874-style lookups (using A6 records and binary labels in the IP6.ARPA domain).

For those who wish to continue to use such stub resolvers rather than switching to the BIND 9 lightweight
resolver, BIND 9 provides a way to automatically convert RFC1886-style lookups into RFC2874-style
lookups and return the results as ”synthetic” AAAA and PTR records.

This feature is disabled by default and can be enabled on a per-client basis by adding a allow-v6-
synthesis { address match list }; clause to the options or view statement. When it is enabled,
recursive AAAA queries cause the server to first try an A6 lookup and if that fails, an AAAA lookups.
No matter which one succeeds, the results are returned as a set of synthetic AAAA records. Similarly,
recursive PTR queries in IP6.INT will cause a lookup in IP6.ARPA using binary labels, and if that
fails, another lookup in IP6.INT. The results are returned as a synthetic PTR record in ip6.int.

The synthetic records have a TTL of zero. DNSSEC validation of synthetic responses is not currently
supported; therefore responses containing synthetic RRs will not have the AD flag set.

50

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

NOTE

allow-v6-synthesis is only performed for clients that are supplied recursive ser-
vice.

6.2.14.14 Tuning

lame-ttl Sets the number of seconds to cache a lame server indication. 0 disables caching. (This is NOT
recommended.) Default is 600 (10 minutes). Maximum value is 1800 (30 minutes).

max-ncache-ttl To reduce network traffic and increase performance the server stores negative answers.
max-ncache-ttl is used to set a maximum retention time for these answers in the server in seconds.
The default max-ncache-ttl is 10800 seconds (3 hours). max-ncache-ttl cannot exceed 7 days and
will be silently truncated to 7 days if set to a greater value.

host-statistics-max In BIND 8, specifies the maximum number of host statistic entries to be kept. Not
implemented in BIND 9.

max-cache-ttl Sets the maximum time for which the server will cache ordinary (positive) answers. The
default is one week (7 days).

min-roots The minimum number of root servers that is required for a request for the root servers to be
accepted. Default is 2.

NOTE

Not yet implemented in BIND9.

sig-validity-interval Specifies the number of days into the future when DNSSEC signatures automat-
ically generated as a result of dynamic updates (Section 4.1) will expire. The default is 30 days.
The signature inception time is unconditionally set to one hour before the current time to allow for
a limited amount of clock skew.

min-refresh-time, max-refresh-time, min-retry-time, max-retry-time These options control the server’s
behavior on refreshing a zone (querying for SOA changes) or retrying failed transfers. Usually the
SOA values for the zone are used, but these values are set by the master, giving slave server ad-
ministrators little control over their contents.

These options allow the administrator to set a minimum and maximum refresh and retry time
either per-zone, per-view or globally. These options are valid for slave and stub zones, and clamp
the SOA refresh and retry times to the specified values.

6.2.14.15 The Statistics File

The statistics file generated by BIND 9 is similar, but not identical, to that generated by BIND 8.

51

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

The statistics dump begins with a line, like:

+++ Statistics Dump +++ (973798949)

The numberr in parentheses is a standard Unix-style timestamp, measured as seconds since January
1, 1970. Following that line are a series of lines containing a counter type, the value of the counter,
optionally a zone name, and optionally a view name. The lines without view and zone listed are global
statistics for the entire server. Lines with a zone and view name for the given view and zone (the view
name is omitted for the default view).

The statistics dump ends with the line where the number is identical to the number in the beginning
line; for example:

— Statistics Dump — (973798949)

The following statistics counters are maintained:

success The number of successful queries made to the server
or zone. A successful query is defined as query which
returns a NOERROR response other than a referral re-
sponse.

referral The number of queries which resulted in referral re-
sponses.

nxrrset The number of queries which resulted in NOERROR
responses with no data.

nxdomain The number of queries which resulted in NXDOMAIN
responses.

recursion The number of queries which caused the server to per-
form recursion in order to find the final answer.

failure The number of queries which resulted in a failure re-
sponse other than those above.

Each query received by the server will cause exactly one of success, referral, nxrrset, nxdomain, or
failure to be incremented, and may additionally cause the recursion counter to be incremented.

6.2.15 server Statement Grammar

server ip_addr {
bogus yes_or_no ;
provide-ixfr yes_or_no ;
request-ixfr yes_or_no ;
edns yes_or_no ;
transfers number ;
transfer-format (one-answer | many-answers) ;]
keys { string ; string ; ... } ;

};

6.2.16 server Statement Definition and Usage

The server statement defines characteristics to be associated with a remote nameserver.

The server statement can occur at the top level of the configuration file or inside a view statement. If a
view statement contains one or more server statements, only those apply to the view and any top-level
ones are ignored. If a view contains no server statements, any top-level server statements are used as
defaults.

52

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

If you discover that a remote server is giving out bad data, marking it as bogus will prevent further
queries to it. The default value of bogus is no.

The provide-ixfr clause determines whether the local server, acting as master, will respond with an
incremental zone transfer when the given remote server, a slave, requests it. If set to yes, incremental
transfer will be provided whenever possible. If set to no, all transfers to the remote server will be
nonincremental. If not set, the value of the provide-ixfr option in the view or global options block is
used as a default.

The request-ixfr clause determines whether the local server, acting as a slave, will request incremental
zone transfers from the given remote server, a master. If not set, the value of the request-ixfr option in
the view or global options block is used as a default.

IXFR requests to servers that do not support IXFR will automatically fall back to AXFR. Therefore, there
is no need to manually list which servers support IXFR and which ones do not; the global default of yes
should always work. The purpose of the provide-ixfr and request-ixfr clauses is to make it possible to
disable the use of IXFR even when both master and slave claim to support it, for example if one of the
servers is buggy and crashes or corrupts data when IXFR is used.

The edns clause determines whether the local server will attempt to use EDNS when communicating
with the remote server. The default is yes.

The server supports two zone transfer methods. The first, one-answer, uses one DNS message per
resource record transferred. many-answers packs as many resource records as possible into a message.
many-answers is more efficient, but is only known to be understood by BIND 9, BIND 8.x, and patched
versions of BIND 4.9.5. You can specify which method to use for a server with the transfer-format
option. If transfer-format is not specified, the transfer-format specified by the options statement will
be used.

transfers is used to limit the number of concurrent inbound zone transfers from the specified server. If
no transfers clause is specified, the limit is set according to the transfers-per-ns option.

The keys clause is used to identify a key id defined by the key statement, to be used for transaction
security when talking to the remote server. The key statement must come before the server statement
that references it. When a request is sent to the remote server, a request signature will be generated using
the key specified here and appended to the message. A request originating from the remote server is
not required to be signed by this key.

Although the grammar of the keys clause allows for multiple keys, only a single key per server is
currently supported.

6.2.17 trusted-keys Statement Grammar

trusted-keys {
string number number number string ;
string number number number string ; ...

};

6.2.18 trusted-keys Statement Definition and Usage

The trusted-keys statement defines DNSSEC security roots. DNSSEC is described in Section 4.7. A se-
curity root is defined when the public key for a non-authoritative zone is known, but cannot be securely
obtained through DNS, either because it is the DNS root zone or its parent zone is unsigned. Once a
key has been configured as a trusted key, it is treated as if it had been validated and proven secure. The
resolver attempts DNSSEC validation on all DNS data in subdomains of a security root.

The trusted-keys statement can contain multiple key entries, each consisting of the key’s domain name,
flags, protocol, algorithm, and the base-64 representation of the key data.

53

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

6.2.19 view Statement Grammar

view view_name class {
match-clients { address_match_list } ;
match-destinations { address_match_list } ;
match-recursive-only yes_or_no ;
view_option; ...
zone-statistics yes_or_no ;
zone_statement; ...

};

6.2.20 view Statement Definition and Usage

The view statement is a powerful new feature of BIND 9 that lets a name server answer a DNS query
differently depending on who is asking. It is particularly useful for implementing split DNS setups
without having to run multiple servers.

Each view statement defines a view of the DNS namespace that will be seen by a subset of clients. A
client matches a view if its source IP address matches the address match list of the view’s match-
clients clause and its destination IP address matches the address match list of the view’s match-
destinations clause. If not specified, both match-clients and match-destinations default to matching
all addresses. A view can also be specified as match-recursive-only, which means that only recursive
requests from matching clients will match that view. The order of the view statements is significant — a
client request will be resolved in the context of the first view that it matches.

Zones defined within a view statement will be only be accessible to clients that match the view. By
defining a zone of the same name in multiple views, different zone data can be given to different clients,
for example, ”internal” and ”external” clients in a split DNS setup.

Many of the options given in the options statement can also be used within a view statement, and then
apply only when resolving queries with that view. When no view-specific value is given, the value in
the options statement is used as a default. Also, zone options can have default values specified in the
view statement; these view-specific defaults take precedence over those in the options statement.

Views are class specific. If no class is given, class IN is assumed. Note that all non-IN views must contain
a hint zone, since only the IN class has compiled-in default hints.

If there are no view statements in the config file, a default view that matches any client is automatically
created in class IN, and any zone statements specified on the top level of the configuration file are
considered to be part of this default view. If any explicit view statements are present, all zone statements
must occur inside view statements.

Here is an example of a typical split DNS setup implemented using view statements.

view "internal" {
// This should match our internal networks.

match-clients { 10.0.0.0/8; };
// Provide recursive service to internal clients only.

recursion yes;
// Provide a complete view of the example.com zone
// including addresses of internal hosts.

zone "example.com" {
type master;
file "example-internal.db";

};
};
view "external" {

match-clients { any; };
// Refuse recursive service to external clients.

recursion no;

54

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

// Provide a restricted view of the example.com zone
// containing only publicly accessible hosts.

zone "example.com" {
type master;
file "example-external.db";

};
};

6.2.21 zone Statement Grammar

zone zone_name class {
type master;
allow-query { address_match_list } ;
allow-transfer { address_match_list } ;
allow-update { address_match_list } ;
update-policy { update_policy_rule ... } ;
also-notify { ip_addr port ip_port ; ip_addr port ip_port ; ... };
check-names (warn|fail|ignore) ;
dialup dialup_option ;
file string ;
forward (only|first) ;
forwarders { ip_addr port ip_port ; ... };
ixfr-base string ;
ixfr-tmp-file string ;
maintain-ixfr-base yes_or_no ;
max-ixfr-log-size number ;
max-transfer-idle-out number ;
max-transfer-time-out number ;
notify yes_or_no | explicit ;
pubkey number number number string ;
notify-source (ip4_addr | *) port ip_port ;
notify-source-v6 (ip6_addr | *) port ip_port ;
zone-statistics yes_or_no ;
sig-validity-interval number ;
database string ;
min-refresh-time number ;
max-refresh-time number ;
min-retry-time number ;
max-retry-time number ;

};

zone zone_name class {
type slave;
allow-notify { address_match_list } ;
allow-query { address_match_list } ;
allow-transfer { address_match_list } ;
allow-update-forwarding { address_match_list } ;
also-notify { ip_addr port ip_port ; ip_addr port ip_port ; ... };
check-names (warn|fail|ignore) ;
dialup dialup_option ;
file string ;
forward (only|first) ;
forwarders { ip_addr port ip_port ; ... };
ixfr-base string ;
ixfr-tmp-file string ;
maintain-ixfr-base yes_or_no ;
masters port ip_port { ip_addr port ip_port key key; ... } ;

55

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

max-ixfr-log-size number ;
max-transfer-idle-in number ;
max-transfer-idle-out number ;
max-transfer-time-in number ;
max-transfer-time-out number ;
notify yes_or_no | explicit ;
pubkey number number number string ;
transfer-source (ip4_addr | *) port ip_port ;
transfer-source-v6 (ip6_addr | *) port ip_port ;
notify-source (ip4_addr | *) port ip_port ;
notify-source-v6 (ip6_addr | *) port ip_port ;
zone-statistics yes_or_no ;
database string ;
min-refresh-time number ;
max-refresh-time number ;
min-retry-time number ;
max-retry-time number ;

};

zone zone_name class {
type hint;
forward (only|first) ;
forwarders { ip_addr port ip_port ; ... };
delegation-only yes_or_no ;
check-names (warn|fail|ignore) ;

};

zone zone_name class {
type stub;
allow-query { address_match_list } ;
check-names (warn|fail|ignore) ;
dialup dialup_option ;
delegation-only yes_or_no ;
file string ;
forward (only|first) ;
forwarders { ip_addr port ip_port ; ... };
masters port ip_port { ip_addr port ip_port key key; ... } ;
max-transfer-idle-in number ;
max-transfer-time-in number ;
pubkey number number number string ;
transfer-source (ip4_addr | *) port ip_port ;
transfer-source-v6 (ip6_addr | *) port ip_port ;
zone-statistics yes_or_no ;
database string ;
min-refresh-time number ;
max-refresh-time number ;
min-retry-time number ;
max-retry-time number ;

};

zone zone_name class {
type forward;
forward (only|first) ;
forwarders { ip_addr port ip_port ; ... };
delegation-only yes_or_no ;

};

zone zone_name class {
type delegation-only;

56

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

};

6.2.22 zone Statement Definition and Usage

6.2.22.1 Zone Types

master The server has a master copy of the data for the zone and will be able
to provide authoritative answers for it.

slave A slave zone is a replica of a master zone. The masters list specifies
one or more IP addresses of master servers that the slave contacts to
update its copy of the zone. By default, transfers are made from port
53 on the servers; this can be changed for all servers by specifying
a port number before the list of IP addresses, or on a per-server ba-
sis after the IP address. Authentication to the master can also be done
with per-server TSIG keys. If a file is specified, then the replica will be
written to this file whenever the zone is changed, and reloaded from
this file on a server restart. Use of a file is recommended, since it often
speeds server startup and eliminates a needless waste of bandwidth.
Note that for large numbers (in the tens or hundreds of thousands)
of zones per server, it is best to use a two level naming scheme for
zone file names. For example, a slave server for the zone example.
com might place the zone contents into a file called ex/example.
com where ex/ is just the first two letters of the zone name. (Most
operating systems behave very slowly if you put 100K files into a sin-
gle directory.)

stub A stub zone is similar to a slave zone, except that it replicates only the
NS records of a master zone instead of the entire zone. Stub zones are
not a standard part of the DNS; they are a feature specific to the BIND
implementation.
Stub zones can be used to eliminate the need for glue NS record in
a parent zone at the expense of maintaining a stub zone entry and
a set of name server addresses in named.conf. This usage is not
recommended for new configurations, and BIND 9 supports it only in
a limited way. In BIND 4/8, zone transfers of a parent zone included
the NS records from stub children of that zone. This meant that, in
some cases, users could get away with configuring child stubs only in
the master server for the parent zone. BIND 9 never mixes together
zone data from different zones in this way. Therefore, if a BIND 9
master serving a parent zone has child stub zones configured, all the
slave servers for the parent zone also need to have the same child stub
zones configured.
Stub zones can also be used as a way of forcing the resolution of a
given domain to use a particular set of authoritative servers. For ex-
ample, the caching name servers on a private network using RFC1918
addressing may be configured with stub zones for 10.in-addr.
arpa to use a set of internal name servers as the authoritative servers
for that domain.

forward A ”forward zone” is a way to configure forwarding on a per-domain
basis. A zone statement of type forward can contain a forward
and/or forwarders statement, which will apply to queries within
the domain given by the zone name. If no forwarders statement is
present or an empty list for forwarders is given, then no forwarding
will be done for the domain, canceling the effects of any forwarders
in the options statement. Thus if you want to use this type of zone to
change the behavior of the global forward option (that is, ”forward
first to”, then ”forward only”, or vice versa, but want to use the same
servers as set globally) you need to respecify the global forwarders.

57

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

hint The initial set of root nameservers is specified using a ”hint zone”.
When the server starts up, it uses the root hints to find a root name-
server and get the most recent list of root nameservers. If no hint
zone is specified for class IN, the server uses a compiled-in default set
of root servers hints. Classes other than IN have no built-in defaults
hints.

delegation-onlyThis is used to enforce the delegation only status of infrastructure
zones (e.g. COM, NET, ORG). Any answer that is received without
a explicit or implict delegation in the authority section will be treated
as NXDOMAIN. This does not apply to the zone apex. This SHOULD
NOT be applied to leaf zones.
delegation-only has no effect on answers received from for-
warders.

6.2.22.2 Class

The zone’s name may optionally be followed by a class. If a class is not specified, class IN (for Internet),
is assumed. This is correct for the vast majority of cases.

The hesiod class is named for an information service from MIT’s Project Athena. It is used to share
information about various systems databases, such as users, groups, printers and so on. The keyword
HS is a synonym for hesiod.

Another MIT development is CHAOSnet, a LAN protocol created in the mid-1970s. Zone data for it can
be specified with the CHAOS class.

6.2.22.3 Zone Options

allow-notify See the description of allow-notify in Section 6.2.14.3.

allow-query See the description of allow-query in Section 6.2.14.3.

allow-transfer See the description of allow-transfer in Section 6.2.14.3.

allow-update Specifies which hosts are allowed to submit Dynamic DNS updates for master zones. The
default is to deny updates from all hosts.

update-policy Specifies a ”Simple Secure Update” policy. See Section 6.2.22.4.

allow-update-forwarding Specifies which hosts are allowed to submit Dynamic DNS updates to slave
zones to be forwarded to the master. The default is { none; }, which means that no update for-
warding will be performed. To enable update forwarding, specify allow-update-forwarding
{ any; };. Specifying values other than { none; } or { any; } is usually counterproduc-
tive, since the responsibility for update access control should rest with the master server, not the
slaves.

Note that enabling the update forwarding feature on a slave server may expose master servers
relying on insecure IP address based access control to attacks; see Section 7.3 for more details.

also-notify Only meaningful if notify is active for this zone. The set of machines that will receive a DNS
NOTIFY message for this zone is made up of all the listed nameservers (other than the primary
master) for the zone plus any IP addresses specified with also-notify. A port may be specified

58

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

with each also-notify address to send the notify messages to a port other than the default of 53.
also-notify is not meaningful for stub zones. The default is the empty list.

check-names This option was used in BIND 8 to restrict the character set of domain names in master
files and/or DNS responses received from the network. BIND 9 does not restrict the character set
of domain names and does not implement the check-names option.

database Specify the type of database to be used for storing the zone data. The string following the
database keyword is interpreted as a list of whitespace-delimited words. The first word identi-
fies the database type, and any subsequent words are passed as arguments to the database to be
interpreted in a way specific to the database type.

The default is "rbt", BIND 9’s native in-memory red-black-tree database. This database does not
take arguments.

Other values are possible if additional database drivers have been linked into the server. Some
sample drivers are included with the distribution but none are linked in by default.

dialup See the description of dialup in Section 6.2.14.1.

delegation-only The flag only applies to hint and stub zones. If set to yes then the zone will also be
treated as if it is also a delegation-only type zone.

forward Only meaningful if the zone has a forwarders list. The only value causes the lookup to fail
after trying the forwarders and getting no answer, while first would allow a normal lookup to be
tried.

forwarders Used to override the list of global forwarders. If it is not specified in a zone of type forward,
no forwarding is done for the zone; the global options are not used.

ixfr-base Was used in BIND 8 to specify the name of the transaction log (journal) file for dynamic update
and IXFR. BIND 9 ignores the option and constructs the name of the journal file by appending ”.
jnl” to the name of the zone file.

ixfr-tmp-file Was an undocumented option in BIND 8. Ignored in BIND 9.

max-transfer-time-in See the description of max-transfer-time-in in Section 6.2.14.6.

max-transfer-idle-in See the description of max-transfer-idle-in in Section 6.2.14.6.

max-transfer-time-out See the description of max-transfer-time-out in Section 6.2.14.6.

max-transfer-idle-out See the description of max-transfer-idle-out in Section 6.2.14.6.

notify See the description of notify in Section 6.2.14.1.

pubkey In BIND 8, this option was intended for specifying a public zone key for verification of signa-
tures in DNSSEC signed zones when they are loaded from disk. BIND 9 does not verify signatures
on loading and ignores the option.

zone-statistics If yes, the server will keep statistical information for this zone, which can be dumped
to the statistics-file defined in the server options.

59

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

sig-validity-interval See the description of sig-validity-interval in Section 6.2.14.14.

transfer-source See the description of transfer-source in Section 6.2.14.6.

transfer-source-v6 See the description of transfer-source-v6 in Section 6.2.14.6.

notify-source See the description of notify-source in Section 6.2.14.6.

notify-source-v6 See the description of notify-source-v6 in Section 6.2.14.6.

min-refresh-time, max-refresh-time, min-retry-time, max-retry-time See the description in Section 6.2.14.14.

6.2.22.4 Dynamic Update Policies

BIND 9 supports two alternative methods of granting clients the right to perform dynamic updates to a
zone, configured by the allow-update and update-policy option, respectively.

The allow-update clause works the same way as in previous versions of BIND. It grants given clients
the permission to update any record of any name in the zone.

The update-policy clause is new in BIND 9 and allows more fine-grained control over what updates are
allowed. A set of rules is specified, where each rule either grants or denies permissions for one or more
names to be updated by one or more identities. If the dynamic update request message is signed (that
is, it includes either a TSIG or SIG(0) record), the identity of the signer can be determined.

Rules are specified in the update-policy zone option, and are only meaningful for master zones. When
the update-policy statement is present, it is a configuration error for the allow-update statement to be
present. The update-policy statement only examines the signer of a message; the source address is not
relevant.

This is how a rule definition looks:

(grant | deny) identity nametype name types

Each rule grants or denies privileges. Once a message has successfully matched a rule, the operation is
immediately granted or denied and no further rules are examined. A rule is matched when the signer
matches the identity field, the name matches the name field, and the type is specified in the type field.

The identity field specifies a name or a wildcard name. The nametype field has 4 values: name, subdomain,
wildcard, and self

name Matches when the updated name is the same as the name in
the name field.

subdomain Matches when the updated name is a subdomain of the name
in the name field (which includes the name itself).

wildcard Matches when the updated name is a valid expansion of the
wildcard name in the name field.

self Matches when the updated name is the same as the message
signer. The name field is ignored.

If no types are specified, the rule matches all types except SIG, NS, SOA, and NXT. Types may be speci-
fied by name, including ”ANY” (ANY matches all types except NXT, which can never be updated).

60

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.3. ZONE FILE

6.3 Zone File

6.3.1 Types of Resource Records and When to Use Them

This section, largely borrowed from RFC 1034, describes the concept of a Resource Record (RR) and
explains when each is used. Since the publication of RFC 1034, several new RRs have been identified
and implemented in the DNS. These are also included.

6.3.1.1 Resource Records

A domain name identifies a node. Each node has a set of resource information, which may be empty. The
set of resource information associated with a particular name is composed of separate RRs. The order of
RRs in a set is not significant and need not be preserved by nameservers, resolvers, or other parts of the
DNS. However, sorting of multiple RRs is permitted for optimization purposes, for example, to specify
that a particular nearby server be tried first. See Section 6.2.14.11 and Section 6.2.14.12.

The components of a Resource Record are:

owner name the domain name where the RR is found.
type an encoded 16 bit value that specifies the type of the re-

source in this resource record. Types refer to abstract re-
sources.

TTL the time to live of the RR. This field is a 32 bit integer in
units of seconds, and is primarily used by resolvers when
they cache RRs. The TTL describes how long a RR can be
cached before it should be discarded.

class an encoded 16 bit value that identifies a protocol family
or instance of a protocol.

RDATA the type and sometimes class-dependent data that de-
scribes the resource.

The following are types of valid RRs (some of these listed, although not obsolete, are experimental (x) or
historical (h) and no longer in general use):

A a host address.
A6 an IPv6 address.
AAAA Obsolete format of IPv6 address
AFSDB (x) location of AFS database servers. Experimental.
CERT holds a digital certificate.
CNAME identifies the canonical name of an alias.
DNAME for delegation of reverse addresses. Replaces the domain

name specified with another name to be looked up. De-
scribed in RFC 2672.

GPOS Specifies the global position. Superseded by LOC.
HINFO identifies the CPU and OS used by a host.
ISDN (x) representation of ISDN addresses. Experimental.
KEY stores a public key associated with a DNS name.
KX identifies a key exchanger for this DNS name.
LOC (x) for storing GPS info. See RFC 1876. Experimental.
MX identifies a mail exchange for the domain. See RFC 974 for

details.
NAPTR name authority pointer.
NSAP a network service access point.
NS the authoritative nameserver for the domain.

61

6.3. ZONE FILE CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

NXT used in DNSSEC to securely indicate that RRs with an
owner name in a certain name interval do not exist in a
zone and indicate what RR types are present for an exist-
ing name. See RFC 2535 for details.

PTR a pointer to another part of the domain name space.
PX provides mappings between RFC 822 and X.400 addresses.
RP (x) information on persons responsible for the domain. Ex-

perimental.
RT (x) route-through binding for hosts that do not have their

own direct wide area network addresses. Experimental.
SIG (”signature”) contains data authenticated in the secure

DNS. See RFC 2535 for details.
SOA identifies the start of a zone of authority.
SRV information about well known network services (replaces

WKS).
TXT text records.
WKS (h) information about which well known network services,

such as SMTP, that a domain supports. Historical, replaced
by newer RR SRV.

X25 (x) representation of X.25 network addresses. Experimental.

The following classes of resource records are currently valid in the DNS:

IN the Internet system.
For information about other, older classes of RRs, see Section A.2.1.

RDATA is the type-dependent or class-dependent data that describes the resource:

A for the IN class, a 32 bit IP address.
A6 maps a domain name to an IPv6 address, with a provision

for indirection for leading ”prefix” bits.
CNAME a domain name.
DNAME provides alternate naming to an entire subtree of the do-

main name space, rather than to a single node. It causes
some suffix of a queried name to be substituted with a name
from the DNAME record’s RDATA.

MX a 16 bit preference value (lower is better) followed by a host
name willing to act as a mail exchange for the owner do-
main.

NS a fully qualified domain name.
PTR a fully qualified domain name.
SOA several fields.

The owner name is often implicit, rather than forming an integral part of the RR. For example, many
nameservers internally form tree or hash structures for the name space, and chain RRs off nodes. The
remaining RR parts are the fixed header (type, class, TTL) which is consistent for all RRs, and a variable
part (RDATA) that fits the needs of the resource being described.

The meaning of the TTL field is a time limit on how long an RR can be kept in a cache. This limit
does not apply to authoritative data in zones; it is also timed out, but by the refreshing policies for
the zone. The TTL is assigned by the administrator for the zone where the data originates. While
short TTLs can be used to minimize caching, and a zero TTL prohibits caching, the realities of Internet
performance suggest that these times should be on the order of days for the typical host. If a change

62

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.3. ZONE FILE

can be anticipated, the TTL can be reduced prior to the change to minimize inconsistency during the
change, and then increased back to its former value following the change.

The data in the RDATA section of RRs is carried as a combination of binary strings and domain names.
The domain names are frequently used as ”pointers” to other data in the DNS.

6.3.1.2 Textual expression of RRs

RRs are represented in binary form in the packets of the DNS protocol, and are usually represented in
highly encoded form when stored in a nameserver or resolver. In the examples provided in RFC 1034,
a style similar to that used in master files was employed in order to show the contents of RRs. In this
format, most RRs are shown on a single line, although continuation lines are possible using parentheses.

The start of the line gives the owner of the RR. If a line begins with a blank, then the owner is assumed
to be the same as that of the previous RR. Blank lines are often included for readability.

Following the owner, we list the TTL, type, and class of the RR. Class and type use the mnemonics
defined above, and TTL is an integer before the type field. In order to avoid ambiguity in parsing, type
and class mnemonics are disjoint, TTLs are integers, and the type mnemonic is always last. The IN class
and TTL values are often omitted from examples in the interests of clarity.

The resource data or RDATA section of the RR are given using knowledge of the typical representation
for the data.

For example, we might show the RRs carried in a message as:

ISI.EDU. MX 10 VENERA.ISI.EDU.
MX 10 VAXA.ISI.EDU

VENERA.ISI.EDU A 128.9.0.32
A 10.1.0.52

VAXA.ISI.EDU A 10.2.0.27
A 128.9.0.33

The MX RRs have an RDATA section which consists of a 16 bit number followed by a domain name.
The address RRs use a standard IP address format to contain a 32 bit internet address.

This example shows six RRs, with two RRs at each of three domain names.

Similarly we might see:

XX.LCS.MIT.EDU.
IN

A 10.0.0.44

CH A MIT.EDU. 2420

This example shows two addresses for XX.LCS.MIT.EDU, each of a different class.

6.3.2 Discussion of MX Records

As described above, domain servers store information as a series of resource records, each of which
contains a particular piece of information about a given domain name (which is usually, but not always,
a host). The simplest way to think of a RR is as a typed pair of data, a domain name matched with a
relevant datum, and stored with some additional type information to help systems determine when the
RR is relevant.

MX records are used to control delivery of email. The data specified in the record is a priority and a
domain name. The priority controls the order in which email delivery is attempted, with the lowest
number first. If two priorities are the same, a server is chosen randomly. If no servers at a given priority

63

6.3. ZONE FILE CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

are responding, the mail transport agent will fall back to the next largest priority. Priority numbers do
not have any absolute meaning — they are relevant only respective to other MX records for that domain
name. The domain name given is the machine to which the mail will be delivered. It must have an
associated A record — CNAME is not sufficient.

For a given domain, if there is both a CNAME record and an MX record, the MX record is in error, and
will be ignored. Instead, the mail will be delivered to the server specified in the MX record pointed to
by the CNAME.

example.com. IN MX 10 mail.example.com.
IN MX 10 mail2.example.com.
IN MX 20 mail.backup.org.

mail.example.com. IN A 10.0.0.1
mail2.example.com. IN A 10.0.0.2

For example:

Mail delivery will be attempted to mail.example.com and mail2.example.com (in any order), and
if neither of those succeed, delivery to mail.backup.org will be attempted.

6.3.3 Setting TTLs

The time to live of the RR field is a 32 bit integer represented in units of seconds, and is primarily used
by resolvers when they cache RRs. The TTL describes how long a RR can be cached before it should be
discarded. The following three types of TTL are currently used in a zone file.

SOA The last field in the SOA is the negative caching TTL. This controls how
long other servers will cache no-such-domain (NXDOMAIN) responses
from you.
The maximum time for negative caching is 3 hours (3h).

$TTL The $TTL directive at the top of the zone file (before the SOA) gives a
default TTL for every RR without a specific TTL set.

RR TTLs Each RR can have a TTL as the second field in the RR, which will control
how long other servers can cache the it.

All of these TTLs default to units of seconds, though units can be explicitly specified, for example,
1h30m.

6.3.4 Inverse Mapping in IPv4

Reverse name resolution (that is, translation from IP address to name) is achieved by means of the
in-addr.arpa domain and PTR records. Entries in the in-addr.arpa domain are made in least-to-most
significant order, read left to right. This is the opposite order to the way IP addresses are usually writ-
ten. Thus, a machine with an IP address of 10.1.2.3 would have a corresponding in-addr.arpa name of
3.2.1.10.in-addr.arpa. This name should have a PTR resource record whose data field is the name of the
machine or, optionally, multiple PTR records if the machine has more than one name. For example, in
the [example.com] domain:

$ORIGIN 2.1.10.in-addr.arpa
3 IN PTR foo.example.com.

64

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.3. ZONE FILE

NOTE

The $ORIGIN lines in the examples are for providing context to the examples
only-they do not necessarily appear in the actual usage. They are only used
here to indicate that the example is relative to the listed origin.

6.3.5 Other Zone File Directives

The Master File Format was initially defined in RFC 1035 and has subsequently been extended. While
the Master File Format itself is class independent all records in a Master File must be of the same class.

Master File Directives include $ORIGIN, $INCLUDE, and $TTL.

6.3.5.1 The $ORIGIN Directive

Syntax: $ORIGINdomain-name [comment]

$ORIGIN sets the domain name that will be appended to any unqualified records. When a zone is first
read in there is an implicit $ORIGIN <zone-name>. The current $ORIGIN is appended to the domain
specified in the $ORIGIN argument if it is not absolute.

$ORIGIN example.com.
WWW CNAME MAIN-SERVER

is equivalent to

WWW.EXAMPLE.COM. CNAME MAIN-SERVER.EXAMPLE.COM.

6.3.5.2 The $INCLUDE Directive

Syntax: $INCLUDE filename [origin] [comment]

Read and process the file filename as if it were included into the file at this point. If origin is specified
the file is processed with $ORIGIN set to that value, otherwise the current $ORIGIN is used.

The origin and the current domain name revert to the values they had prior to the $INCLUDE once the
file has been read.

NOTE

RFC 1035 specifies that the current origin should be restored after an $IN-
CLUDE, but it is silent on whether the current domain name should also be
restored. BIND 9 restores both of them. This could be construed as a devia-
tion from RFC 1035, a feature, or both.

6.3.5.3 The $TTL Directive

Syntax: $TTL default-ttl [comment]

Set the default Time To Live (TTL) for subsequent records with undefined TTLs. Valid TTLs are of the
range 0-2147483647 seconds.

65

6.3. ZONE FILE CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

$TTL is defined in RFC 2308.

6.3.6 BIND Master File Extension: the $GENERATE Directive

. Syntax: $GENERATE range lhs type rhs [comment]

$GENERATE is used to create a series of resource records that only differ from each other by an iterator.
$GENERATE can be used to easily generate the sets of records required to support sub /24 reverse
delegations described in RFC 2317: Classless IN-ADDR.ARPA delegation.

$ORIGIN 0.0.192.IN-ADDR.ARPA.
$GENERATE 1-2 0 NS SERVER$.EXAMPLE.
$GENERATE 1-127 $ CNAME $.0

is equivalent to

0.0.0.192.IN-ADDR.ARPA NS SERVER1.EXAMPLE.
0.0.0.192.IN-ADDR.ARPA. NS SERVER2.EXAMPLE.
1.0.0.192.IN-ADDR.ARPA. CNAME 1.0.0.0.192.IN-ADDR.ARPA.
2.0.0.192.IN-ADDR.ARPA. CNAME 2.0.0.0.192.IN-ADDR.ARPA.
...
127.0.0.192.IN-ADDR.ARPA. CNAME 127.0.0.0.192.IN-ADDR.ARPA.

range This can be one of two forms: start-stop or start-stop/step. If the first
form is used then step is set to 1. All of start, stop and step must be
positive.

lhs lhs describes the owner name of the resource records to be created.
Any single $ symbols within the lhs side are replaced by the iter-
ator value. To get a $ in the output you need to escape the $ us-
ing a backslash \, e.g. \$. The $ may optionally be followed by
modifiers which change the offset from the interator, field width and
base. Modifiers are introduced by a { immediately following the $ as
${offset[,width[,base]]}. For example, ${-20,3,d} which subtracts 20
from the current value, prints the result as a decimal in a zero padded
field of width 3. Available output forms are decimal (d), octal (o) and
hexadecimal (x or X for uppercase). The default modifier is ${0,0,d}. If
the lhs is not absolute, the current $ORIGIN is appended to the name.
For compatibility with earlier versions $$ is still recognised as indicat-
ing a literal $ in the output.

type At present the only supported types are PTR, CNAME, DNAME, A,
AAAA and NS.

rhs A domain name. It is processed similarly to lhs.

The $GENERATE directive is a BIND extension and not part of the standard zone file format.

66

Chapter 7

BIND 9 Security Considerations

7.1 Access Control Lists

Access Control Lists (ACLs), are address match lists that you can set up and nickname for future use in
allow-notify, allow-query, allow-recursion, blackhole, allow-transfer, etc.

Using ACLs allows you to have finer control over who can access your nameserver, without cluttering
up your config files with huge lists of IP addresses.

It is a good idea to use ACLs, and to control access to your server. Limiting access to your server by
outside parties can help prevent spoofing and DoS attacks against your server.

Here is an example of how to properly apply ACLs:

// Set up an ACL named "bogusnets" that will block RFC1918 space,
// which is commonly used in spoofing attacks.
acl bogusnets { 0.0.0.0/8; 1.0.0.0/8; 2.0.0.0/8; 192.0.2.0/24; 224.0.0.0/3; 10.0.0.0/8; 172.16.0.0/12; 192.168.0.0/16; };

// Set up an ACL called our-nets. Replace this with the real IP numbers.
acl our-nets { x.x.x.x/24; x.x.x.x/21; };
options {

...

...
allow-query { our-nets; };
allow-recursion { our-nets; };
...
blackhole { bogusnets; };
...

};

zone "example.com" {
type master;
file "m/example.com";
allow-query { any; };

};

This allows recursive queries of the server from the outside unless recursion has been previously dis-
abled.

For more information on how to use ACLs to protect your server, see the AUSCERT advisory at <ftp:
//ftp.auscert.org.au/pub/auscert/advisory/AL-1999.004.dns dos>

67

ftp://ftp.auscert.org.au/pub/auscert/advisory/AL-1999.004.dns_dos
ftp://ftp.auscert.org.au/pub/auscert/advisory/AL-1999.004.dns_dos

7.2. CHROOT AND SETUID (FOR UNIX SERVERS)CHAPTER 7. BIND 9 SECURITY CONSIDERATIONS

7.2 chroot and setuid (for UNIX servers)

On UNIX servers, it is possible to run BIND in a chrooted environment (chroot()) by specifying the ”-t”
option. This can help improve system security by placing BIND in a ”sandbox,” which will limit the
damage done if a server is compromised.

Another useful feature in the UNIX version of BIND is the ability to run the daemon as a nonprivileged
user (-u user). We suggest running as a nonprivileged user when using the chroot feature.

Here is an example command line to load BIND in a chroot() sandbox, /var/named, and to run named
setuid to user 202:

/usr/local/bin/named -u 202 -t /var/named

7.2.1 The chroot Environment

In order for a chroot environment to work properly in a particular directory (for example, /var/
named), you will need to set up an environment that includes everything BIND needs to run. From
BIND’s point of view, /var/named is the root of the filesystem. You will need to adjust the values of
options like like directory and pid-file to account for this.

Unlike with earlier versions of BIND, you will typically not need to compile named statically nor install
shared libraries under the new root. However, depending on your operating system, you may need to
set up things like /dev/zero, /dev/random, /dev/log, and /etc/localtime.

7.2.2 Using the setuid Function

Prior to running the named daemon, use the touch utility (to change file access and modification times)
or the chown utility (to set the user id and/or group id) on files to which you want BIND to write. Note
that if the named daemon is running as a nonprivileged user, it will not be able to bind to new restricted
ports if the server is reloaded.

7.3 Dynamic Update Security

Access to the dynamic update facility should be strictly limited. In earlier versions of BIND the only
way to do this was based on the IP address of the host requesting the update, by listing an IP address
or network prefix in the allow-update zone option. This method is insecure since the source address of
the update UDP packet is easily forged. Also note that if the IP addresses allowed by the allow-update
option include the address of a slave server which performs forwarding of dynamic updates, the master
can be trivially attacked by sending the update to the slave, which will forward it to the master with its
own source IP address causing the master to approve it without question.

For these reasons, we strongly recommend that updates be cryptographically authenticated by means
of transaction signatures (TSIG). That is, the allow-update option should list only TSIG key names, not
IP addresses or network prefixes. Alternatively, the new update-policy option can be used.

Some sites choose to keep all dynamically updated DNS data in a subdomain and delegate that subdo-
main to a separate zone. This way, the top-level zone containing critical data such as the IP addresses of
public web and mail servers need not allow dynamic update at all.

68

Chapter 8

Troubleshooting

8.1 Common Problems

8.1.1 It’s not working; how can I figure out what’s wrong?

The best solution to solving installation and configuration issues is to take preventative measures by
setting up logging files beforehand. The log files provide a source of hints and information that can be
used to figure out what went wrong and how to fix the problem.

8.2 Incrementing and Changing the Serial Number

Zone serial numbers are just numbers-they aren’t date related. A lot of people set them to a number
that represents a date, usually of the form YYYYMMDDRR. A number of people have been testing these
numbers for Y2K compliance and have set the number to the year 2000 to see if it will work. They then
try to restore the old serial number. This will cause problems because serial numbers are used to indicate
that a zone has been updated. If the serial number on the slave server is lower than the serial number
on the master, the slave server will attempt to update its copy of the zone.

Setting the serial number to a lower number on the master server than the slave server means that the
slave will not perform updates to its copy of the zone.

The solution to this is to add 2147483647 (2ˆ31-1) to the number, reload the zone and make sure all slaves
have updated to the new zone serial number, then reset the number to what you want it to be, and reload
the zone again.

8.3 Where Can I Get Help?

The Internet Software Consortium (ISC) offers a wide range of support and service agreements for BIND
and DHCP servers. Four levels of premium support are available and each level includes support for
all ISC programs, significant discounts on products and training, and a recognized priority on bug fixes
and non-funded feature requests. In addition, ISC offers a standard support agreement package which
includes services ranging from bug fix announcements to remote support. It also includes training in
BIND and DHCP.

To discuss arrangements for support, contact info@isc.org <mailto:info@isc.org> or visit the ISC
web page at <http://www.isc.org/services/support/> to read more.

69

mailto:info@isc.org
http://www.isc.org/services/support/

Appendix A

Appendices

A.1 Acknowledgements

A.1.1 A Brief History of the DNS and BIND

Although the ”official” beginning of the Domain Name System occurred in 1984 with the publication of
RFC 920, the core of the new system was described in 1983 in RFCs 882 and 883. From 1984 to 1987, the
ARPAnet (the precursor to today’s Internet) became a testbed of experimentation for developing the new
naming/addressing scheme in an rapidly expanding, operational network environment. New RFCs
were written and published in 1987 that modified the original documents to incorporate improvements
based on the working model. RFC 1034, ”Domain Names-Concepts and Facilities,” and RFC 1035,
”Domain Names-Implementation and Specification” were published and became the standards upon
which all DNS implementations are built.

The first working domain name server, called ”Jeeves,” was written in 1983-84 by Paul Mockapetris for
operation on DEC Tops-20 machines located at the University of Southern California’s Information Sci-
ences Institute (USC-ISI) and SRI International’s Network Information Center (SRI-NIC). A DNS server
for Unix machines, the Berkeley Internet Name Domain (BIND) package, was written soon after by a
group of graduate students at the University of California at Berkeley under a grant from the US Defense
Advanced Research Projects Administration (DARPA).

Versions of BIND through 4.8.3 were maintained by the Computer Systems Research Group (CSRG) at
UC Berkeley. Douglas Terry, Mark Painter, David Riggle and Songnian Zhou made up the initial BIND
project team. After that, additional work on the software package was done by Ralph Campbell. Kevin
Dunlap, a Digital Equipment Corporation employee on loan to the CSRG, worked on BIND for 2 years,
from 1985 to 1987. Many other people also contributed to BIND development during that time: Doug
Kingston, Craig Partridge, Smoot Carl-Mitchell, Mike Muuss, Jim Bloom and Mike Schwartz. BIND
maintenance was subsequently handled by Mike Karels and O. Kure.

BIND versions 4.9 and 4.9.1 were released by Digital Equipment Corporation (now Compaq Computer
Corporation). Paul Vixie, then a DEC employee, became BIND’s primary caretaker. Paul was assisted
by Phil Almquist, Robert Elz, Alan Barrett, Paul Albitz, Bryan Beecher, Andrew Partan, Andy Cheren-
son, Tom Limoncelli, Berthold Paffrath, Fuat Baran, Anant Kumar, Art Harkin, Win Treese, Don Lewis,
Christophe Wolfhugel, and others.

BIND Version 4.9.2 was sponsored by Vixie Enterprises. Paul Vixie became BIND’s principal archi-
tect/programmer.

BIND versions from 4.9.3 onward have been developed and maintained by the Internet Software Con-
sortium with support being provided by ISC’s sponsors. As co-architects/programmers, Bob Halley
and Paul Vixie released the first production-ready version of BIND version 8 in May 1997.

BIND development work is made possible today by the sponsorship of several corporations, and by the
tireless work efforts of numerous individuals.

71

A.3. GENERAL DNS REFERENCE INFORMATION APPENDIX A. APPENDICES

A.2 Historical DNS Information

A.2.1 Classes of Resource Records

A.2.1.1 HS = hesiod

The [hesiod] class is an information service developed by MIT’s Project Athena. It is used to share
information about various systems databases, such as users, groups, printers and so on. The keyword
hs is a synonym for hesiod.

A.2.1.2 CH = chaos

The chaos class is used to specify zone data for the MIT-developed CHAOSnet, a LAN protocol created
in the mid-1970s.

A.3 General DNS Reference Information

A.3.1 IPv6 addresses (A6)

IPv6 addresses are 128-bit identifiers for interfaces and sets of interfaces which were introduced in the
DNS to facilitate scalable Internet routing. There are three types of addresses: Unicast, an identifier for
a single interface; Anycast, an identifier for a set of interfaces; and Multicast, an identifier for a set of
interfaces. Here we describe the global Unicast address scheme. For more information, see RFC 2374.

The aggregatable global Unicast address format is as follows:

3 13 8 24 16 64 bits
FP TLA ID RES NLA ID SLA ID Interface ID

<—— Public Topology ——>
<-Site Topology->

<—— Interface Identifier ——>

Where

FP = Format Prefix (001)
TLA ID = Top-Level Aggregation Identifier
RES = Reserved for future use
NLA ID = Next-Level Aggregation Identifier
SLA ID = Site-Level Aggregation Identifier
INTERFACE ID = Interface Identifier

The Public Topology is provided by the upstream provider or ISP, and (roughly) corresponds to the IPv4
network section of the address range. The Site Topology is where you can subnet this space, much the same
as subnetting an IPv4 /16 network into /24 subnets. The Interface Identifier is the address of an individual
interface on a given network. (With IPv6, addresses belong to interfaces rather than machines.)

The subnetting capability of IPv6 is much more flexible than that of IPv4: subnetting can now be carried
out on bit boundaries, in much the same way as Classless InterDomain Routing (CIDR).

The internal structure of the Public Topology for an A6 global unicast address consists of:

3 13 8 24
FP TLA ID RES NLA ID

72

APPENDIX A. APPENDICES A.4. BIBLIOGRAPHY (AND SUGGESTED READING)

A 3 bit FP (Format Prefix) of 001 indicates this is a global Unicast address. FP lengths for other types of
addresses may vary.

13 TLA (Top Level Aggregator) bits give the prefix of your top-level IP backbone carrier.

8 Reserved bits

24 bits for Next Level Aggregators. This allows organizations with a TLA to hand out portions of their
IP space to client organizations, so that the client can then split up the network further by filling in more
NLA bits, and hand out IPv6 prefixes to their clients, and so forth.

There is no particular structure for the Site topology section. Organizations can allocate these bits in any
way they desire.

The Interface Identifier must be unique on that network. On ethernet networks, one way to ensure this is
to set the address to the first three bytes of the hardware address, ”FFFE”, then the last three bytes of the
hardware address. The lowest significant bit of the first byte should then be complemented. Addresses
are written as 32-bit blocks separated with a colon, and leading zeros of a block may be omitted, for
example:

2001:db8:201:9:a00:20ff:fe81:2b32

IPv6 address specifications are likely to contain long strings of zeros, so the architects have included a
shorthand for specifying them. The double colon (‘::’) indicates the longest possible string of zeros that
can fit, and can be used only once in an address.

A.4 Bibliography (and Suggested Reading)

A.4.1 Request for Comments (RFCs)

Specification documents for the Internet protocol suite, including the DNS, are published as part of
the Request for Comments (RFCs) series of technical notes. The standards themselves are defined by
the Internet Engineering Task Force (IETF) and the Internet Engineering Steering Group (IESG). RFCs
can be obtained online via FTP at ftp://www.isi.edu/in-notes/RFCxxx.txt <ftp://www.isi.edu/
in-notes/> (where xxx is the number of the RFC). RFCs are also available via the Web at <http:
//www.ietf.org/rfc/>.

References

Standards

[RFC1034] Domain Names — Concepts and Facilities, P.V. Mockapetris, November 1987.

[RFC1035] Domain Names — Implementation and Specification, P. V. Mockapetris, November 1987.

[RFC974] Mail Routing and the Domain System, C. Partridge, January 1986.

Proposed Standards

[RFC1995] Incremental Zone Transfer in DNS, M. Ohta, August 1996.

[RFC1996] A Mechanism for Prompt Notification of Zone Changes, P. Vixie, August 1996.

[RFC2136] Dynamic Updates in the Domain Name System, P. Vixie, S. Thomson, Y. Rekhter, and J.
Bound, April 1997.

[RFC2181] Clarifications to the DNS Specification, R., R. Bush Elz, July 1997.

73

ftp://www.isi.edu/in-notes/
ftp://www.isi.edu/in-notes/
http://www.ietf.org/rfc/
http://www.ietf.org/rfc/

A.4. BIBLIOGRAPHY (AND SUGGESTED READING) APPENDIX A. APPENDICES

[RFC2308] Negative Caching of DNS Queries, M. Andrews, March 1998.

[RFC2845] Secret Key Transaction Authentication for DNS (TSIG), P. Vixie, O. Gudmundsson, D. East-
lake, 3rd, and B. Wellington, May 2000.

Proposed Standards Still Under Development

[RFC1886] DNS Extensions to support IP version 6, S. Thomson and C. Huitema, December 1995.

[RFC2065] Domain Name System Security Extensions, D. Eastlake, 3rd and C. Kaufman, January
1997.

[RFC2137] Secure Domain Name System Dynamic Update, D. Eastlake, 3rd, April 1997.

Other Important RFCs About DNS Implementation

[RFC1535] A Security Problem and Proposed Correction With Widely Deployed DNS Software., E.
Gavron, October 1993.

[RFC1536] Common DNS Implementation Errors and Suggested Fixes, A. Kumar, J. Postel, C. Neuman,
P. Danzig, and S. Miller, October 1993.

[RFC1982] Serial Number Arithmetic, R. Elz and R. Bush, August 1996.

Resource Record Types

[RFC1183] New DNS RR Definitions, C.F. Everhart, L. A. Mamakos, R. Ullmann, and P. Mockapetris,
October 1990.

[RFC1706] DNS NSAP Resource Records, B. Manning and R. Colella, October 1994.

[RFC1876] A Means for Expressing Location Information in the Domain Name System, C. Davis, P. Vixie,
T., and I. Dickinson, January 1996.

[RFC2052] A DNS RR for Specifying the Location of Services., A. Gulbrandsen and P. Vixie, October
1996.

[RFC2163] Using the Internet DNS to Distribute MIXER Conformant Global Address Mapping, A. Al-
locchio, January 1998.

[RFC2168] Resolution of Uniform Resource Identifiers using the Domain Name System, R. Daniel and M.
Mealling, June 1997.

[RFC2230] Key Exchange Delegation Record for the DNS, R. Atkinson, October 1997.

DNS and the Internet

[RFC1101] DNS Encoding of Network Names and Other Types, P. V. Mockapetris, April 1989.

[RFC1123] Requirements for Internet Hosts - Application and Support, Braden, October 1989.

[RFC1591] Domain Name System Structure and Delegation, J. Postel, March 1994.

[RFC2317] Classless IN-ADDR.ARPA Delegation, H. Eidnes, G. de Groot, and P. Vixie, March 1998.

DNS Operations

[RFC1537] Common DNS Data File Configuration Errors, P. Beertema, October 1993.

[RFC1912] Common DNS Operational and Configuration Errors, D. Barr, February 1996.

[RFC2010] Operational Criteria for Root Name Servers., B. Manning and P. Vixie, October 1996.

74

APPENDIX A. APPENDICES A.4. BIBLIOGRAPHY (AND SUGGESTED READING)

[RFC2219] Use of DNS Aliases for Network Services., M. Hamilton and R. Wright, October 1997.

Other DNS-related RFCs

[RFC1464] Using the Domain Name System To Store Arbitrary String Attributes, R. Rosenbaum, May
1993.

[RFC1713] Tools for DNS Debugging, A. Romao, November 1994.

[RFC1794] DNS Support for Load Balancing, T. Brisco, April 1995.

[RFC2240] A Legal Basis for Domain Name Allocation, O. Vaughan, November 1997.

[RFC2345] Domain Names and Company Name Retrieval, J. Klensin, T. Wolf, and G. Oglesby, May
1998.

[RFC2352] A Convention For Using Legal Names as Domain Names, O. Vaughan, May 1998.

Obsolete and Unimplemented Experimental RRs

[RFC1712] DNS Encoding of Geographical Location, C. Farrell, M. Schulze, S. Pleitner, and D. Baldoni,
November 1994.

A.4.2 Internet Drafts

Internet Drafts (IDs) are rough-draft working documents of the Internet Engineering Task Force. They
are, in essence, RFCs in the preliminary stages of development. Implementors are cautioned not to
regard IDs as archival, and they should not be quoted or cited in any formal documents unless accom-
panied by the disclaimer that they are ”works in progress.” IDs have a lifespan of six months after which
they are deleted unless updated by their authors.

A.4.3 Other Documents About BIND

References

[1] DNS and BIND, Paul Albitz and Cricket Liu, Copyright c© 1998 Sebastopol, CA: O’Reilly
and Associates.

75

	1 Introduction
	1.1 Scope of Document
	1.2 Organization of This Document
	1.3 Conventions Used in This Document
	1.4 The Domain Name System (DNS)
	1.4.1 DNS Fundamentals
	1.4.2 Domains and Domain Names
	1.4.3 Zones
	1.4.4 Authoritative Name Servers
	1.4.4.1 The Primary Master
	1.4.4.2 Slave Servers
	1.4.4.3 Stealth Servers

	1.4.5 Caching Name Servers
	1.4.5.1 Forwarding

	1.4.6 Name Servers in Multiple Roles

	2 BIND Resource Requirements
	2.1 Hardware requirements
	2.2 CPU Requirements
	2.3 Memory Requirements
	2.4 Nameserver Intensive Environment Issues
	2.5 Supported Operating Systems

	3 Nameserver Configuration
	3.1 Sample Configurations
	3.1.1 A Caching-only Nameserver
	3.1.2 An Authoritative-only Nameserver

	3.2 Load Balancing
	3.3 Notify
	3.4 Nameserver Operations
	3.4.1 Tools for Use With the Nameserver Daemon
	3.4.1.1 Diagnostic Tools
	3.4.1.2 Administrative Tools

	3.4.2 Signals

	4 Advanced Concepts
	4.1 Dynamic Update
	4.1.1 The journal file

	4.2 Incremental Zone Transfers (IXFR)
	4.3 Split DNS
	4.4 TSIG
	4.4.1 Generate Shared Keys for Each Pair of Hosts
	4.4.1.1 Automatic Generation
	4.4.1.2 Manual Generation

	4.4.2 Copying the Shared Secret to Both Machines
	4.4.3 Informing the Servers of the Key's Existence
	4.4.4 Instructing the Server to Use the Key
	4.4.5 TSIG Key Based Access Control
	4.4.6 Errors

	4.5 TKEY
	4.6 SIG(0)
	4.7 DNSSEC
	4.7.1 Generating Keys
	4.7.2 Creating a Keyset
	4.7.3 Signing the Child's Keyset
	4.7.4 Signing the Zone
	4.7.5 Configuring Servers

	4.8 IPv6 Support in BIND 9
	4.8.1 Address Lookups Using AAAA Records
	4.8.2 Address to Name Lookups Using Nibble Format

	5 The BIND 9 Lightweight Resolver
	5.1 The Lightweight Resolver Library
	5.2 Running a Resolver Daemon

	6 BIND 9 Configuration Reference
	6.1 Configuration File Elements
	6.1.1 Address Match Lists
	6.1.1.1 Syntax
	6.1.1.2 Definition and Usage

	6.1.2 Comment Syntax
	6.1.2.1 Syntax
	6.1.2.2 Definition and Usage

	6.2 Configuration File Grammar
	6.2.1 acl Statement Grammar
	6.2.2 acl Statement Definition and Usage
	6.2.3 controls Statement Grammar
	6.2.4 controls Statement Definition and Usage
	6.2.5 include Statement Grammar
	6.2.6 include Statement Definition and Usage
	6.2.7 key Statement Grammar
	6.2.8 key Statement Definition and Usage
	6.2.9 logging Statement Grammar
	6.2.10 logging Statement Definition and Usage
	6.2.10.1 The channel Phrase
	6.2.10.2 The category Phrase

	6.2.11 lwres Statement Grammar
	6.2.12 lwres Statement Definition and Usage
	6.2.13 options Statement Grammar
	6.2.14 options Statement Definition and Usage
	6.2.14.1 Boolean Options
	6.2.14.2 Forwarding
	6.2.14.3 Access Control
	6.2.14.4 Interfaces
	6.2.14.5 Query Address
	6.2.14.6 Zone Transfers
	6.2.14.7 Operating System Resource Limits
	6.2.14.8 Server Resource Limits
	6.2.14.9 Periodic Task Intervals
	6.2.14.10 Topology
	6.2.14.11 The sortlist Statement
	6.2.14.12 RRset Ordering
	6.2.14.13 Synthetic IPv6 responses
	6.2.14.14 Tuning
	6.2.14.15 The Statistics File

	6.2.15 server Statement Grammar
	6.2.16 server Statement Definition and Usage
	6.2.17 trusted-keys Statement Grammar
	6.2.18 trusted-keys Statement Definition and Usage
	6.2.19 view Statement Grammar
	6.2.20 view Statement Definition and Usage
	6.2.21 zone Statement Grammar
	6.2.22 zone Statement Definition and Usage
	6.2.22.1 Zone Types
	6.2.22.2 Class
	6.2.22.3 Zone Options
	6.2.22.4 Dynamic Update Policies

	6.3 Zone File
	6.3.1 Types of Resource Records and When to Use Them
	6.3.1.1 Resource Records
	6.3.1.2 Textual expression of RRs

	6.3.2 Discussion of MX Records
	6.3.3 Setting TTLs
	6.3.4 Inverse Mapping in IPv4
	6.3.5 Other Zone File Directives
	6.3.5.1 The $ORIGIN Directive
	6.3.5.2 The $INCLUDE Directive
	6.3.5.3 The $TTL Directive

	6.3.6 BIND Master File Extension: the $GENERATE Directive

	7 BIND 9 Security Considerations
	7.1 Access Control Lists
	7.2 chroot and setuid (for UNIX servers)
	7.2.1 The chroot Environment
	7.2.2 Using the setuid Function

	7.3 Dynamic Update Security

	8 Troubleshooting
	8.1 Common Problems
	8.1.1 It's not working; how can I figure out what's wrong?

	8.2 Incrementing and Changing the Serial Number
	8.3 Where Can I Get Help?

	A Appendices
	A.1 Acknowledgements
	A.1.1 A Brief History of the DNS and BIND

	A.2 Historical DNS Information
	A.2.1 Classes of Resource Records
	A.2.1.1 HS = hesiod
	A.2.1.2 CH = chaos

	A.3 General DNS Reference Information
	A.3.1 IPv6 addresses (A6)

	A.4 Bibliography (and Suggested Reading)
	A.4.1 Request for Comments (RFCs)
	A.4.2 Internet Drafts
	A.4.3 Other Documents About BIND

